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Inertial effects in thermoacoustic subcritical bifurcation
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Summary. In combustion chambers, thermoacoustic coupling can lead to high acoustic levels, which are harmful for the system

mechanical integrity. In this work, this complex phenomenon physics is reduced to a low-order phenomenological model, represented

by a non-linear noise-driven oscillator. This model mimics the main aspects of the dynamics observed in gas turbine combustors, aero

or rocket engines. In particular, this model is able to reproduce the situation in which a control parameter is changed, leading to a

subcritical bifurcation of one of the thermoacoustic modes. The main purpose of this paper is to investigate transient inertial effects

when the bifurcation bistable region is crossed in a finite time.

Introduction

Thermoacoustic instabilities are experienced in most of the constant pressure combustion systems. Caused by a con-
structive interaction between acoustic pressure and heat release rate fluctuations, this phenomenon can produce a high-
amplitude limit cycles. These can damage the combustor and therefore prevent the machine to be operated at optimal
conditions [1]. The stability of the system is a function of many different physical parameters, such as operating pressure,
inlet temperature or fuel/air ratio. In some cases, the system displays a subcritical bifurcation when these parameters are
varied, going suddenly from a “quiet” regime to a high-amplitude limit cycle [2]. In the operating points lying between the
critical and the Hopf points, a bistable regime establishes, due to the strong turbulence-induced heat release fluctuations,
which act as a stochastic forcing. An example is provided in fig. 1, where a lab-scale combustor dynamic pressure p and
amplitude A time traces are presented, together with their statistics, at three different operating points. One can observe
how the Probability Density Function (PDF) of the amplitude P (A) changes accordingly, presenting two distinct maxima
in the second case.
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Figure 1: Lab-scale combustor dynamic pressure p(t) (light) and amplitude A(t) (dark) signals and relative statistics at three different
operating points. Left: stable operation, Center: bistable, Right: high amplitude limit cycle.

Non-linear oscillator model

A simple phenomenological model of a thermoacoustic system with subcritical bifurcation is provided by the nonlinear
oscillator:

p̈+ ω2

0p = [2ν + κp2 − γp4]ṗ+ ξ, (1)

where ω0 is the angular frequency, ν the oscillation linear growth rate, κ and γ two constants that set the non-linear
response of the oscillator. The term ξ is a white noise forcing of intensity Γ that models non-coherent turbulence-induced
heat release rate fluctuations. The RHS of this equation is in practice smaller then the LHS, hence one can assume
p(t) = A(t) cos(ω0t+ φ(t)) and derive a Langevin equation for the slowly-varying amplitude A(t):
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where F(A) = −dV/dA, i.e. the derivative of a potential. The variation in time of the PDF for the amplitude P (A, t) is
described by the Fokker-Planck equation (FPE):
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which then gives for t → ∞ the stationary PDF P∞(A) = N exp[−4ω2
0V (A)/Γ]. In fig. 2a, the map of the stationary

PDF is plotted in a bifurcation diagram fashion, as a function of the linear growth rate ν. One can observe the bistability
region, bounded between ν1 and ν2. This corresponds to the range of ν that generates a potential V (A) featuring two
minima, i.e. two potential wells separated by a potential barrier at A = AB(ν).
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Ramped ν

-5-10

0

0

0

0.25

0.25

0.5

0.5

5 10

0

-10

10

AB(ν)

t [s]

t [s]

ν

ν

A

ν

V
(A

,ν
)

-10

0
0

5

(c)

t=0s

0.2

0.2

1.0

2.0

∆
T

C
/t

ra
m

p

tramp

0.1

0.3

0.5

0.7

0
0 1 2 3 4 5 6 7 8 9 10

(d)

Slow← →Fast

Figure 2: Low-order model description of the bifurcation process. a) Stationary PDF map P∞(A, ν), with the two potential wells 1⃝
and 2⃝, separated by the boundary amplitude AB(ν). In the insets the potential V and the PDF P∞, for three selected points (νa, νb,
νc) in the bistable region. b) Solution of the unsteady FPE for P (A, ν(t)), with the growth rate ν varying linearly in tramp = 0.5s.
c) Mechanical analogy of the process, described as a ball rolling on the potential surface V (A, ν): ball mean path for two ramping
times tramp = 0.5s (blue) and tramp = 5s (red). d) Relative bifurcation delay ∆TC/tramp, as a function of the ramp time tramp. Colored
points correspond to the two cases in c).

Unsteady Fokker-Planck equation and mean first-passage

To unveil the oscillator dynamics peculiarities, time domain simulation of eq. (1) and numerical solution of eq. (3) are
performed with ν varying linearly in time. The two approaches are in very good agreement. The solution of the FPE is
presented in fig. 2b. A delay in the transition from the quiet regime to the loud one is observed: the oscillations remain
bounded for some time in a range of small amplitudes even though, in the stationary case, these points would be unstable.
Other phenomena, like hysteresis when ramping from high to low ν, are correctly captured by simulations and FPE.
To quantify the delay in transition from quiet to loud regime, the Mean First Passage Time is considered. In the bistable
range, i.e. ν ∈]ν1; ν2[, this is defined as the average time TMFP(ν) needed for the state to reach the high-amplitude potential
well for the first time. In case of a ramping, the potential barrier between the two wells moves in time (AB(ν(t))), and
for ν > ν2 only the high-amplitude well remains. Even when the low-amplitude well has disappeared, the system does
not readily transit to the stable limit cycle regime. In fig. 2c this phenomenon is presented via a mechanical analogy: the
state is a ball rolling on the potential surface. When the ball is fast (blue), its inertia makes it roll straighter then the slow
(red) ball, which falls in the high-amplitude well right after this appears. The average time TC needed to cross the moving
potential barrier AB(t) is estimated via simulations of the process, and a relative crossing delay ∆TC = TC−TMFP(ν(TC))
is computed. Figure 2d shows how the inertial effects have a stronger relevance for fast ramping, leading to a higher
relative delay. This fact has a practical impact when one is mapping the operative points of a new combustion system:
excessive ramp speeds cause the system to jump later to the limit cycle and therefore with higher amplitude, and a longer
time is then needed to bring it back to a safe operating condition.
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