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Summary. In this paper, by means of upper and lower solutions, we develop monotone iterative method for the existence of extremal
solutions for coupled system of nonlinear fractional integro-differential equations with advanced arguments. We illustrate this technique
with the help of an example.

Introduction

Fractional calculus is a branch of mathematical analysis, that provides integrals and derivatives of any arbitrary order and
due to their multiple applications in many areas of science and engineering has grown extensively.
The monotone iterative technique based on upper and lower solutions is a powerful tool for proving the existence of
extremal solutions of nonlinear differential problems.
As far as we know, few authors have applied this technique to the system of nonlinear fractional differential equations.
In this study, we consider the existence of extremal solutions for the following system of nonlinear Riemann-Liouville
fractional integro-differential equations with advanced arguments:

(Dαx(t))′ = f(t,Dαx(t), Dαy(t), x(t), y(t), Dβx(t), Tx(t), Sy(t)),
(Dαy(t))′ = g(t,Dαx(t), Dαy(t), x(t), y(t), Dβx(t), Tx(t), Sy(t)),
Dαx(0) = x∗, Dαy(0) = y∗,
t1−αx(t)|t=0 = 0, t1−αy(t)|t=0 = 0, 0 < β ≤ α ≤ 1,

(1)

where t ∈ J := [0, T ], f ∈ C(J × R7,R),

(Tx)(t) =

∫ t

0

k(t, s)x(s)ds, (Sy)(t) =

∫ T

0

h(t, s)y(s)ds.

Also k(t, s) ∈ C[D,R+], h(t, s) ∈ C[[0, T ]2,R+], D = {(t, s) ∈ R2| 0 ≤ s ≤ t ≤ T} and Dα, Dβ are the Riemann-
Liouville fractional derivatives.

Preliminaries

In this section, we present some definitions and results which will be needed later.

Lemma 0.1 The coupled system of nonlinear fractional differential equation (1) is equivalent to the following initial
value problem:  u′(t) = f(t, u(t), v(t), Iαu(t), Iαv(t), Iα−βu(t), T1u(t), S1v(t)),

v′(t) = g(t, u(t), v(t), Iαu(t), Iαv(t), Iα−βu(t), T1u(t), S1v(t)),
u(0) = x∗, v(0) = y∗, 0 < β ≤ α ≤ 1, t ∈ J := [0, T ],

(2)

where

T1u(t) =

∫ t

0

k1(t, s)u(s)ds, S1v(t) =

∫ T

0

h1(t, s)v(s)ds,

k1(t, s) =

∫ t

s

(τ − s)α−1k(t, τ)

Γ(α)
dτ, h1(t, s) =

∫ T

s

(τ − s)α−1h(t, τ)

Γ(α)
dτ.

Theorem 0.1 Let the following assumptions hold:

• (H1) There exist (u0, v0), (α0, β0) ∈ C1(J,R)× C1(J,R) such that ∀t ∈ J satisfying

(u0(t), v0(t)) ≤ (α0(t), β0(t)),
(
u0(t) ≤ α0(t), v0(t) ≤ β0(t)

)
,


u′
0(t) ≤ f(t, u0(t), v0(t), I

αu0(t), I
αv0(t), I

α−βu0(t), T1u0(t), S1v0(t)),

u0(0) ≤ x∗,

v′0(t) ≤ g(t, u0(t), v0(t), I
αu0(t), I

αv0(t), I
α−βu0(t), T1u0(t), S1v0(t)),

v0(0) ≤ y∗, 0 < β ≤ α ≤ 1, t ∈ J,

(3)
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and


α′
0(t) ≥ f(t, α0(t), β0(t), I

αα0(t), I
αβ0(t), I

α−βα0(t), T1α0(t), S1β0(t)),

α0(0) ≥ x∗,

β′
0(t) ≥ g(t, α0(t), β0(t), I

αα0(t), I
αβ0(t), I

α−βα0(t), T1α0(t), S1β0(t)),

β0(0) ≥ y∗, 0 < β ≤ α ≤ 1, t ∈ J,

(4)

• (H2) There exist constants M, N ≥ 0 such that

f(t, u, v, Iαu, Iαv, Iα−βu, T1u, S1v)− f(t, ū, v, Iαū, Iαv, Iα−β ū, T1ū, S1v)

≥ −M(u− ū),

where u0 ≤ ū ≤ u ≤ α0, v0 ≤ v ≤ β0 ∀t ∈ J ,

g(t, u, v, Iαu, Iαv, Iα−βu, T1u, S1v)− g(t, u, v̄, Iαu, Iαv̄, Iα−βu, T1u, S1v̄)

≥ −N(v − v̄),

where v0 ≤ v̄ ≤ v ≤ β0, u0 ≤ u ≤ α0 ∀t ∈ J .

Then there exist monotone iterative sequences {(un, vn)}, {(αn, βn)} which converge uniformly to the extremal solutions
(u∗, v∗), (α

∗, β∗) of (2), respectively, where {(un, vn)}, {(αn, βn)} are defined by

un(t) = x∗e−
∫ t
0
Mds +

∫ t

0

e−
∫ t
s
Mdτ

[
f
(
s, un−1(s), vn−1(s), I

αun−1(s), I
αvn−1(s),

Iα−βun−1(s), T1un−1(s), S1vn−1(s)
)

+Mun−1(s)
]
ds,

vn(t) = y∗e−
∫ t
0
Nds +

∫ t

0

e−
∫ t
s
Ndτ

[
g
(
s, un−1(s), vn−1(s), I

αun−1(s), I
αvn−1(s),

Iα−βun−1(s), T1un−1(s), S1vn−1(s)
)

+Nvn−1(s)
]
ds,

αn(t) = x∗e−
∫ t
0
Mds +

∫ t

0

e−
∫ t
s
Mdτ

[
f
(
s, αn−1(s), βn−1(s), I

ααn−1(s), I
αβn−1(s),

Iα−βαn−1(s), T1αn−1(s), S1βn−1(s)
)

+Mαn−1(s)
]
ds,

βn(t) = y∗e−
∫ t
0
Nds +

∫ t

0

e−
∫ t
s
Ndτ

[
g
(
s, αn−1(s), βn−1(s), I

ααn−1(s), I
αβn−1(s),

Iα−βαn−1(s), T1αn−1(s), S1βn−1(s)
)

+Nβn−1(s)
]
ds,

also
(u0, v0) ≤ (u1, v1) ≤ ... ≤ (un, vn) ≤ ... ≤ (αn, βn) ≤ (αn−1, βn−1) ≤ ... ≤ (α0, β0).

Main Result

In this section, we prove the existence of extremal solutions of (1).
Let C1−α(J,R) = {u ∈ C(0, T ]; t1−αu ∈ C(J,R)} and DC1−α(J,R) = {u ∈ C1−α(J,R); Dαu ∈ C1(J,R)}.
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Theorem 0.2 Assume that:
(H ′

1 ) There exist w0 = (w1, w2), z0 = (z1, z2) ∈ DC1−α(J,R)×DC1−α(J,R) such that Dαw1(t) ≤ Dαz1(t), D
αw2(t) ≤

Dαz2(t) and w0(t), z0(t), are lower and upper solutions of (1),
(Dαw1(t))

′ ≤ f(t,Dαw1(t), D
αw2(t), w1(t), w2(t), D

βw1(t), Tw1(t), Sw2(t)),

Dαw1(0) ≤ x∗, t1−αw1(t)|t=0 = 0,

(Dαw2(t))
′ ≤ g(t,Dαw1(t), D

αw2(t), w1(t), w2(t), D
βw1(t), Tw1(t), Sw2(t)),

Dαw2(0) ≤ y∗, t1−αw2(t)|t=0 = 0, 0 < β ≤ α ≤ 1,

(5)

and 
(Dαz1(t))

′ ≥ f(t,Dαz1(t), D
αz2(t), z1(t), z2(t), D

βz1(t), T z1(t), Sz2(t)),

Dαz1(0) ≥ x∗, t1−αz1(t)|t=0 = 0,

(Dαz2(t))
′ ≥ g(t,Dαz1(t), D

αz2(t), z1(t), z2(t), D
βz1(t), T z1(t), Sz2(t)),

Dαz2(0) ≥ y∗, t1−αz2(t)|t=0 = 0, 0 < β ≤ α ≤ 1,

(6)

(H ′
2) There exist constants M, N ≥ 0 such that

f(t,Dαx(t), Dαy(t), x(t), y(t), Dβx(t), Tx(t), Sy(t))
−f(t,Dαx̄(t), Dαy(t), x̄(t), y(t), Dβx̄(t), T x̄(t), Sy(t))
≥ −M(Dαx(t)−Dαx̄(t)),

(7)

where Dαw1(t) ≤ Dαx̄(t) ≤ Dαx(t) ≤ Dαz1(t), D
αw2(t) ≤ Dαy(t) ≤ Dαz2(t). g(t,Dαx(t), Dαy(t), x(t), y(t), Dβx(t), Tx(t), Sy(t))

−g(t,Dαx(t), Dαȳ(t), x(t), ȳ(t), Dβx(t), Tx(t), Sȳ(t))
≥ −N(Dαy(t)−Dαȳ(t)),

(8)

where Dαw2(t) ≤ Dαȳ(t) ≤ Dαy(t) ≤ Dαz2(t), D
αw1(t) ≤ Dαx(t) ≤ Dαz1(t).

Then there exist monotone iterative sequences {wn = (wn
1 , w

n
2 )}, {zn = (zn1 , z

n
2 )} which converge uniformly to the

extremal solutions w∗ = (w1∗ , w2∗), z
∗ = (z∗1 , z

∗
2) of (1), respectively.

Example

In this section, in order to clarify the above-mentioned technique, we consider the following example which is appeared
in the most applied problems in engineering sciences.

(D
1
2x(t))′ = −(1 + t)D

1
2x(t)− (3 + t2)D

1
2 y(t) + t2(y(t))2

+ t
15D

1
4x(t) +

∫ t

0
tsx(s)ds−

∫ 1

0
sy(s)ds, t ∈ [0, 1],

(D
1
2 y(t))′ = − t

2D
1
2x(t)− (1 + t)D

1
2 y(t)− t2x(t) + y(t)

− 1
2D

1
4x(t) +

∫ 1

0
s2y(s)ds, t ∈ [0, 1],

D
1
2x(0) = 0, t

1
2x(t)|t=0 = 0,

D
1
2 y(0) = 0, t

1
2 y(t)|t=0 = 0,

(9)

where α = 1
2 , β = 1

4 . By easy computation, we have M = 2, N = 1
2 .

Now, take w0(t) = (0, 0), z0(t) = (1, 1). It is easy to see that w0, z0 are lower and upper solutions of (9) and all the
conditions of theorem (0.2) hold.
Thus there exist iterative sequences {wn = (wn

1 , w
n
2 )}, {zn = (zn1 , z

n
2 )} which converge uniformly to the extremal

solutions w∗ = (w1∗ , w2∗), z
∗ = (z∗1 , z

∗
2) of (9), respectively.
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