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Stability of Capillary Waves of Finite Amplitude
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Summary. The direct Lyapunov method is used to prove the stability of the exact Crapper solution for capillary waves. The dynamic
equations of the capillary wave are presented in the form of an infinite Euler-Lagrange chain of equations for the Stokes coefficients.
The stationary solution found for these equations is the Crapper solution for capillary waves. With the help of energy and momentum
conservation laws the Lyapunov function is constructed. It is shown that the Lyapunov function is positive definite with respect to any
perturbations of waves surfaces, for waves with the period multiple of wavelength.

Introduction

In [1] the exact solution of the problem of the potential plane-parallel flow of an ideal fluid in the domain −∞ < x <∞,
−∞ < y < η(kx) was constructed, where the function η(kx) is periodic η(kx) = η(kx + 2π), the wave number k is
related to the wave length as follows λ = 2π/k. The Laplace condition p− p0 + σ/r = 0 is satisfied on the wave surface
η(kx), where r is the curvature radius of the cylinder, p and p0 are the fluid pressure inside and outside the cylinder, σ is
the surface tension coefficient.
In this work we present the analytic solution for the capillary waves stability problem (earlier numerical methods were
used). We use the second variation of the Lyapunov function to prove the stability of capillary waves with respect to
symmetric and non-symmetric disturbances.

Stationary capillary waves

To describe the dynamics of capillary waves, we use the wave parametrization, introduced by Stokes [2]. We seek the
conformal mapping of the disc |ζ| < 1 of the complex plane ζ with a cut on the positive part of abscissa on the domain of
one wave period on the complex plane z = x+ iy in the following form

z(ζ) =
λ

2π

[
i ln ζ +

∞∑
n=1

znζ
n

]
. (1)

The circle ζ = eiγ corresponds to the surface of the wave z = xs + iη. We consider the real and imaginary parts of the
Laurent series coefficients zn = xn + iyn, n = 1, 2, . . . to be the generalized coordinates of the wave qi, i = 1, 2, . . . .
The kinetic energy of the wave is the quadratic function of generalized velocities ẋ0, q̇i, i = 1, 2, . . . , where x0 is the
cyclic coordinate that determines the horizontal movement of the wave, ẋ0 – the wave propagation velocity.
The summands in the kinetic energy may be separated into three groups: quadratic in ẋ0, linear in x0 and independent of
ẋ0

Ekin =
1

2
Mẋ2

0 +M1ẋ0 +M2 =
(Mẋ0 +M1)2

2M
+M∗, M∗ = M2 −

M2
1

2M
. (2)

Here M is independent of velocities, M1 and M2 are the linear and quadratic function of velocities q̇i. As Ekin is
positively definite, then M∗ is also a positively definite quadratic form of q̇i.
Suppose that the system of Lagrange equations has a stationary solution, for which ẋ0 = u, q̇i = 0, i = 1, 2, . . . . In
this solution the surface of the wave moves with velocity u, without changing its form.
For stationary motion M∗ = 0 and, thus, the energy value is (M0u)

2 + E0
pot = E0 , where E0

pot is the value of potential
energy at a stationary point. The functionE is a Lyapunov function if it is positively definite. AsM∗ is positively definite,
we consider only the functional U = (M0u)2

2M +Epot , If the stationary point is the minimum of U , the Lyapunov Theorem
implies that the stationary motion is stable.
The Lyapunov function can be expressed in the dimensionless form as follows

U = σ
λ

2π
Ū, Ū =

S2
0

4S
c2 + l̄, l̄ =

l

λ
= 1 +

∞∑
k=1

|qn|2 , (3)

where Ū and l̄ is a dimensionless Lyapunov function and the arc length of one wave period, S =
∑∞
n=1 n(x2

n + y2
n), S0

is the value of S at the stationary point and c is the dimensionless wave velocity.
The assertion that the first variation of Ū equals zero allows us to find the parameters qn of the wave and its propagation
velocity c.
The solution of the variational equation δŪ = 0 may be presented as follows

qi = 2bi , (4)
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Figure 1: Capillary waves at different
values of parameter b.

Figure 2: Eigenvalues (symmetric dis-
turbances).
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Figure 3: Eigenvalues (non-symmetric
disturbances).

where b is a parameter of a family of solutions. To prove this we consider small disturbances of coordinates with respect
to stationary values

qn = 2bn + ε(ξn + iηn), n = 1, 2, . . . . (5)

We substitute them into function l̄ (3) and expand by parameter ε. Then we will find the expansion for the Stokes
coefficients xn and yn, for functional S and for function U :

l̄ = 1 +

∞∑
k=1

(
(2bn + εξn)2 + ε2η2

n

)
= 1 + εδl̄ + ε2δ2 l̄ , (6)

S = S0 + εδS + ε2δ2S , Ū = U0 + εδU + ε2δ2U ,

where δ and δ2 denote the first and second variation accordingly. Then we calculate the first variation of U, considering
(4). Then we obtain the same expressions for x and y as did Crapper. Therefore, a new deduction method for the known
exact solution for the capillary wave [1] is presented. The values b = b0 = 0.454, a = 2.280 corresponds to the maximum
wave development. In Fig. 1 the graphs of waves with values b := 0.1; 0.3 and maximum wave development b = 0.454
are presented.

Second Variation

The second variation is δ2Ū = 1
2
d2Ū
dε2

∣∣∣
ε=0

is the quadratic form of variations ξi, ηi, i = 1, 2, . . . . It is expressed through

the first and second variations of functionals S and l̄. The variables ξn and ηn of the second variation δ2Ū may be
separated and the second variation δ2Ū may be presented as the sum of two quadratic forms δ2Ū = δ2Ū1(ξ) + δ2Ū2(η).
The first δ2Ū1(ξ) depends only on ξ and is expressed through δ2S1 and δ2 l̄1, which depend only on ξ. The second is
expressed through δ2S2 and δ2 l̄2, which depend only on η.
The first quadratic form defines the stability of the wave with respect to the symmetric disturbances ξn, the second one
defines the stability with respect to the asymmetric disturbances ηn.
Let us first consider the quadratic forms of second variations for symmetric disturbances

δ2Ū1 =
c2

4

(
(δS)2

S0
− δ2S1

)
+ δ2 l̄1 .

For δ2U1(ξ) the following inequality holds δ2Ū1 > λmin

∑∞
n=1(ξn)2 , where λmin is the smallest eigenvalue of the

quadratic form. Thus, the inequality above implies that the second variation δ2U > 0 is strictly positive for all variations
δqi. By the Lyapunov Theorem the stationary motion of capillary wave is stable for all possible amplitude values.
The eigenvalues determine the main oscillation frequencies near stationary motion.
Consider now the quadratic form of the second variation for non-symmetric disturbances

dU2 δ2Ū2 = −c
2

4
δ2S2 + δ2 l̄2 . (7)

The matrix bmn = 1
2
∂2(δ2Ū2)
∂ηm∂ηn

for b = 0 is diagonal and bnn = (n− 1)/n, n = 2, 3, . . . . The eigenvalues are λn = bnn.
The matrix bmn is singular, its determinant equals zero.
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