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Finding Periodic Solutions in the Dynamics of Metal Cutting via Averaging
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Summary. Regenerative machine tool vibrations are investigated in orthogonal cutting. Bifurcation analysis is presented for the
governing nonlinear delay-differential equation, where the nonlinearity is represented by a Taylor series. Periodic solutions arising from
Hopf bifurcation are calculated analytically using the method of averaging. Bistable technological parameter regions are determined
by closed-form formulas.

Introduction

Machine tool vibrations produce noise, create poor surface finish, and limit the productivity of machining operations.
Therefore, it is important to understand, suppress, and avoid machine tool chatter. One main source of machine tool
vibrations is the surface regeneration effect, which can be described by delay-differential equations from dynamics point
of view. The stability of their stationary solution determines the onset of chatter. Here, we investigate global stability
properties and the phenomenon of bistability by analyzing the nonlinear dynamics of cutting.
We analyze the single-degree-of-freedom model of orthogonal cutting shown in Fig. 1a. Assuming a single dominant
vibration mode, the tool’s motion is governed by the following dimensionless equation

ẍ(t) + 2ζẋ(t) + x(t) = w

∞∑
m=1

ηm (x(t− τ)− x(t))
m
. (1)

The damped oscillator on the left-hand side has a damping ratio ζ and is excited by the cutting force variation on the
right-hand side. The cutting force variation is proportional to the dimensionless chip width w and is a function of the
dimensionless chip thickness variation x(t− τ)−x(t), which is the difference of the tool’s positions at the actual and the
previous cut. The regenerative delay τ = 2π/Ω is related to the angular velocity Ω of the workpiece. The cutting force
variation is expanded into Taylor series with cutting-force coefficients ηm (m ∈ Z+), where η1 = 1.
The trivial equilibrium of Eq. (1) represents stationary cutting, whereas its stability decides the onset of machine tool
chatter. The linear stability boundaries of the equilibrium are well-known and read

wst(ω) =

(
ω2 − 1

)2
+ 4ζ2ω2

2 (ω2 − 1)
, Ωst(ω) =

ωπ

jπ − arctan

(
ω2 − 1

2ζω

) , j ∈ Z+ , (2)

which can be depicted in the stability lobe diagram shown in Fig. 1b. The stability boundaries are associated with
Hopf bifurcation, which is typically subcritical and gives rise to an unstable periodic solution with approximate angular
frequency ω. The unstable solution makes the equilibrium’s basin of attraction finite and affects global stability. As a
result, there exists a region of bistability in the stability charts, where the linearly stable equilibrium coexists with the
unstable periodic solution and is not stable in the global sense. Here, we determine the region of bistability by means
of estimating the amplitude of the periodic solution analytically. Methods for computing periodic solutions include the
center manifold reduction [1, 2] and the method of multiple scales [3, 4]. Here we use the method of averaging [5–9].

Method of averaging

We look for a harmonic approximation of the periodic solution in the form

x(t) ≈ r(t) cos(ωt) , ẋ(t) ≈ −r(t)ω sin(ωt) , (3)

where the amplitude r(t) is to be approximated by a constant. The amplitude r(t) can be expressed as

r(t) = x(t) cos(ωt)− ẋ(t)
1

ω
sin(ωt) . (4)

Differentiating Eq. (4) and using Eqs. (1) and (3), we construct a differential equation for the amplitude r(t). Then, we
apply the theory of averaging by integrating from 0 to 2π/ω and dividing by 2π/ω, which yields the average system

ṙ(t) = F (r(t)) . (5)

Now we approximate the amplitude by a constant, r(t) ≈ r(t) ≈ r0, which yields ṙ(t) ≈ 0. That is, we compute the
equilibrium r0 of Eq. (5) satisfying F (r0) = 0, which implies

wst − w
∞∑
k=1

(
2k − 1

k − 1

)
η2k−1

(
r20 sin2

(ωτst
2

))k−1
= 0 . (6)
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Figure 1: The mechanical model of orthogonal cutting (a); the corresponding stability lobe diagram (b); and bifurcation diagrams (c).

The algebraic equation (6) can be solved for the approximation r0 of the amplitude. In the case of cubic and quintic
nonlinearities, we get the exact formulas

r3rd0 =

√√√√− w − wst

3η3 sin2
(ωτst

2

)
w
, r5th0 =

√√√√√−3η3w +
√

9η23w
2 − 40η5w(w − wst)

20η5 sin2
(ωτst

2

)
w

. (7)

The corresponding bifurcation diagrams are shown in Fig. 1c. The branches of periodic solutions are valid up to r0 = rloss0 .
At r0 = rloss0 , the amplitude of the unstable periodic solution gets so large that the tool jumps out of the workpiece, loses
contact during cutting, and the periodic solution vanishes. Thus, loss of contact sets the boundary wbist of the bistable
region. Loss of contact implies zero chip thickness, that is, h(t) = 1 + x(t − τ) − x(t) = 0, which, combined with
Eqs. (3) and (6), gives the following expression for the size of the bistable region

wst − wbist

wst
=

∞∑
k=2

1

4k−1

(
2k − 1

k

)
η2k−1

1 +

∞∑
k=2

1

4k−1

(
2k − 1

k

)
η2k−1

=

3

4
η3 +

10

16
η5 +

35

64
η7 +

126

256
η9 + . . .

1 +
3

4
η3 +

10

16
η5 +

35

64
η7 +

126

256
η9 + . . .

. (8)

Irrespective of the order of nonlinearity in the cutting force characteristics, formula (8) provides an easy way of estimating
what percentage of the linearly stable region is bistable. This way, bistable parameter regions can be avoided and global
stability is guaranteed for the cutting process. The approximate formula (8) has good accuracy when the periodic solution
of the nonlinear differential equation is nearly harmonic.
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