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Summary. In this contribution, a new type of stability problem is shown in milling operations, which are related to the surface quality.
The machined Surface Location Error depends on the previously and actually resulted surface offset through the variation of the radial
immersion. Bifurcation analysis is presented for the governing nonlinear implicit map.

Introduction

In industry, milling is a widely used manufacturing method. Due to the intermittent behaviour of the milling processes,
the cutting edges enter and exit the material periodically according to the applied radial immersion. This phenomenon
leads to a periodic cutting force which always results forced vibration in the mechanical system. This vibration is copied
to the surface and creates the so-called Surface Location Error (SLE), which is an offset error defined by the largest
deviation between the machined and the desired surface [1, 2]. Since the forced vibration usually creates negligible
surface roughness, this error could be compensated with a proper tool path modification. This type of surface error is
significant typically at resonant spindle speeds where large amplitude vibration can occur. During the prediction of this
surface error, the widely used methods do not consider that the SLE can influence the radial immersion. However, in
the case study [1], the measured vibration amplitude was in the range of the radial immersion. Moreover in case of
consecutive immersions during roughing process, the actual and the preceding SLE modifies the entering and the exiting
position. In a previous study [3], the evaluation of the series of SLE values is investigated in a way that the actual pre-set
radial immersion is modified by the SLE of the previous immersion only, which leads to an explicit map. In this paper,
the actual SLE is considered by means of an implicit map, and the stability properties of the fix point and corresponding
bifurcation curves are analysed.

Implicit map

The SLE depends on various dynamical and cutting parameters like feed per tooth, spindle speed, axial depth of cut, radial
immersion and milling type such as up- or down-milling. The radial immersion has a key role in the following analysis,
therefore, a function is defined which describes the dependence of the SLE on the radial immersion. It is denoted by
fSLE(a) = SLE, where a is the radial immersion (see Fig. 1b). The derivation of the SLE for a given radial immersion
is not described in this paper; several methods can be found in the literature [1, 2]. The Surface Location Error for the
ith consecutive immersion can be calculated by a map as SLEi = fSLE(ai), where the current radial immersion ai is
composed by the pre-set radial immersion a0, the actual error SLEi and the previously resulted error SLEi−1 in the form
as ai = a0+SLEi−1−SLEi (see Fig. 1a). Note, there is an analogy between this model and the surface regenerative effect
[4], where the actual chip thickness depends on the feed, the present and the delayed positions of the tool. To compare the
phenomena, it can be modelled by delay differential equations, but the evaluation of the SLE can be given as a difference
equation by means of an implicit map, given in the form,

SLEi = fSLE(a0 + SLEi−1 − SLEi). (1)

This implicit map determines how an SLE develops into another SLE over immersion-by immersion. These series of the
SLEs may converge to a fix point, called Cumulative Surface Location Error (CSLEp1 = lim

i→∞
SLEi), where p1 stands

for the period-1 or fix point solution. At these fix points, the following expression holds; SLEi = SLEi−1 ≡ CSLEp1,
therefore the fix point CSLEp1 is the given function fSLE(a0) = CSLEp1 (see Fig. 1b). The stability of this fix point is
determined by perturbation method in the next Section.
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Figure 1: a) schematic model of the surface evaluation in successive immersions; b) resulted surface error in the function of the
dimensionless radial immersion
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Figure 2: a) decay ratio of the perturbation of the fix point; b),c) stable, unstable fix points and period-2 solutions respected to the
surface errors and to the radial immersion together with the decay ratio of the corresponding fix point

Stability analysis

The general discrete solution SLEi can be written as a small perturbation ξi around fix point as SLEi = CSLEp1 + ξi.
Substituting into Eq. (1), expanding into Taylor series and eliminating the higher-order terms give the implicit variational
map. However, this implicit map is linear, therefore it can be transformed into explicit formula, read as:

implicit formula: ξi = f ′SLE(a0)(ξi−1 − ξi), explicit formula: ξi =
f ′SLE(a0)

f ′SLE(a0) + 1︸ ︷︷ ︸
=µ

ξi−1 (2)

In the explicit formula, µ denotes the decay ratio. If |µ| < 1 then the fix point is stable, otherwise it is unstable [5]. As
it is shown in Eq. (2), µ can be expressed as a hyperbolic function of the derivatives of the fSLE(a0) at the fix point (see
Fig. 2a). As it can be seen, that flip bifurcation can occur at f ′SLE(a0) = −0.5, which leads to period-2 solutions around
the fix point, for which CSLE1,2

p2 denotes the two alternating solutions. Note, that usual fold bifurcation cannot occur since
it is not possible that µ reach 1. To obtain period-2 solutions, two-step map have to be prepared, therefore Eq. (1) is
substituted successively into itself, reads as

SLEi+2 = fSLE(a0 + fSLE(a0 + SLEi − SLEi+1)︸ ︷︷ ︸
SLEi+1

−SLEi+2) (3)

In case of period-2 solutions, the following expressions hold: SLEi = SLEi+2 6= SLEi+1 ≡ CSLE1
p2 and SLEi+1 =

SLEi−1 6= SLEi ≡ CSLE2
p2. Substituting into Eq. (3), period-2 solutions CSLE1,2

p2 can be calculated by means of solving
the following equations

CSLE1
p2 = fSLE(a0 + fSLE(a0 + CSLE1

p2 − CSLE2
p2)− CSLE1

p2)

CSLE2
p2 = fSLE(a0 + fSLE(a0 + CSLE2

p2 − CSLE1
p2)− CSLE2

p2).
(4)

Note, that the stability of these period-2 solutions can be analysed in the same way as presented above. If further bifurca-
tions are detected on a period-2 branch, then period-4 branch will occur, and the similar procedure have to be applied with
four-step map. The above-described computation method is applied to a case study and presented in Fig. 2. The calculated
stable and unstable fix points CSLEp1 are shown in Fig. 2bc along the 45◦ line with green and red color, respectively. The
stable period-2 solutions CSLE1,2

p2 are also denoted. The decay ratio µ of the fix point is visualised in Fig. 2c, which shows
that the stable fix points become unstable and create period-2 solutions at µ = −1 .
With the proposed model it is shown that the series of SLE can be a period-2 solution, which leads to an unpredictable
surface error at the end of the roughing processes.
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