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Global manifolds parametrised by isochrons
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Summary. Isochrons are sets of points in the basin of a stable periodic orbit that have the same asymptotic phase, that is, synchronise
with a given point on the periodic orbit. We generalise this notion to periodic orbits of saddle type by considering the parametrisations
of the stable manifold by forward-time isochrons and of the unstable manifold by backward-time isochrons. Computing these families
of isochrons as (un)stable submanifolds of the period-map allows us to find, represent and illustrate two-dimensional global invariant
manifolds in a new and efficient way.

Isochrons were introduced in 1974 by Winfree [9] as a means of viewing oscillatory dynamics in terms of a radial (con-
tracting) component and a phase component. Any point in the basin of attraction of a periodic orbit Γ lies on precisely one
isochron, namely, the one that corresponds to the point on Γ with which it will synchronise under the flow. Guckenheimer
made the association with manifold theory [2] and showed that isochrons are manifolds of codimension one that are as
smooth as the vector field itself; moreover, the collection of all isochrons of Γ foliate its basin. Hence, the dynamics of the
system is entirely determined by the (discrete-time) dynamics on a single isochron. Winfree was keen to use this elegant
theory in practice, but found that the computation of isochrons is rather challenging and, at the time, could only be done
for relatively simple systems [5, 10]. Recently, there has been a renewed interest in isochrons and novel computational
methods have been developed; we refer to [6] for a recent overview.
We compute the isochrons as one-dimensional parametrised curves with a method based on the continuation of suitable
two-point boundary value problems [4, 8]. So far, this method has only been used in planar systems, for which the
isochrons are one-dimensional manifolds. The approach can be used to compute isochrons of both attracting and re-
pelling periodic orbits, in which case points on an isochron synchronise in backward time; we speak of forward-time and
backward-time isochrons, respectively. Isochrons of a spiral sink or source equilibrium can also be defined and computed
in a similar way [3, 6].
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Figure 1: Parametrisation by isochrons of global manifolds of a periodic orbit Γ, where phase is indicated by colour shade. Panel (a)
shows W s(Γ) and Wu(Γ) for system (1); panels (b) and (c) show W s(Γ) of system (2) together with the one-dimensional stable
manifold W s(p) of the saddle equilibrium p.

The key idea presented here is that isochrons foliate stable and unstable manifolds of saddle-type periodic orbits or
equilibria in higher-dimensional systems. In particular, two-dimensional global manifolds can be computed as families of
one-dimensional isochrons. We illustrate this idea by computing the respective forward- and backward-time isochrons of
a saddle periodic orbit in the three-dimensional vector field

ẋ = β x− ω y (1 − κ z) − x
x2 + y2

1 − (ζz)3
, ẏ = ω x (1 − κ z) + β y − y

x2 + y2

1 − (ζz)3
, and ż = α z, (1)

which we designed in the same spirit as the example given in [9]. For α = 1.0, β = 1.0, κ = 0.15, ζ = 0.125, and
ω = 2.0, system (1) has a saddle periodic orbit Γ with two-dimensional stable and unstable manifolds, denoted W s(Γ)
and Wu(Γ), respectively. Figure 1(a) shows W s(Γ) and Wu(Γ) calculated with the method from [5, 6] as one-parameter
families of forward-time and backward-time isochrons, respectively. A selection from each family is shown as the curves
on the surfaces, which are shaded according to the phase points on Γ; the discontinuity in the shading marks the location
of the isochron of phase 0. Note that the isochron foliations ofW s(Γ) andWu(Γ) highlight and illustrate how trajectories
on the manifolds converge to Γ in forward or backward time.
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Figures 1(b) and (c) show the two-dimensional stable manifold of a non-orientable periodic orbit, also denoted Γ, of the
so-called ζ3-model [1] ...

x + ẍ+ β ẋ+ x (x− α) = 0, (2)

with α = 3.2 and β = 2.0; we also plot the one-dimensional stable manifold W s(p) of a co-existing saddle equilibrium
p. Figure 1(b) shows a first part of W s(Γ) that is approximately the size of this same manifold computed with a different
method in [7, Figure 7]; note the half-twist in the surface, which is topologically a Möbius strip. Figure 1(c) shows a
much larger part of W s(Γ) and provides a better illustration of the geometry that arises due to the non-orientability of Γ.
As before, W s(Γ) is shaded according to the phase points on Γ and the discontinuity in shade marks the location of the
isochron of phase 0. Observe how the colour shading bends with W s(p), indicating the enormous local stretching of the
flow along one branch of W s(p).
The computation of a two-dimensional global stable or unstable manifold as a foliation of one-dimensional isochrons
provides information about the dynamics on the manifolds that is complementary to the foliation by trajectories. This
aspect is of particular interest for the study of manifolds of non-orientable periodic orbits and of interactions between
global invariant manifolds.
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