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Summary. Modification of the Krilov-Bogolyubov-Mitropolyski asymptotic method of non-linear mechanics, and investigations of non-
linear one- or multi-frequency free or forced, stationary or non-stationary oscillations of a class of the deformable bodies, is realized by 

the energy method. System of ordinary non-linear differential equations along amplitudes and phases of one or multi-frequency free, as 
well as forced stationary or non-stationary regimes, in first asymptotic approximation, are expressed by virtual work along deformable 

body point displacements. For the class of non-linear elastic homogeneous beams and thin elastic plates, system of ordinary non-linear 

differential equations along amplitudes and phases, in first asymptotic approximation are expressed. Interactions between non-linear 
modes in first asymptotic approximation are discussed. 

 
Energy method applied to the Krilo-Bogolybov-Mitropolyski asymptotic method  
For modification of the Krilov-Bogolyubov-Mitropolyski asymptotic methods [2, 3] of non-linear mechanics by 

energy method for investigation one frequency as well as multi-frequency regimes of transversal vibrations of non-

linear elastic bodies, it is necessary to starts with known prepositions of asymptotic methods.  Principal idea of the 

energy method applied to the Krilo-Bogolybov-Mitropolyski asymptotic method, is presented with partial differential 

equation of transversal vibration of the thin, non-linear elastic plate in the form: 
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with boundary conditions in the form: 
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and with initial conditions in the form 
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where ( )tyxw ,,  is transversal displacement of a thin plate, ( )yxN ,  is middle surface point, 
4α is coefficient 

presenting parameters of plate, ε  is a small parameter, tετ =  is slow changing time, 

( ) ( )
3,2,13,2,1 ,,

== ⇒
kksrsr yxWyxW

s

are eigen amplitude functions of linear oscillations of corresponding plate satisfying 

boundary and orthogonality conditions, 
( )k

p  and  
( )k

q  some real parameters, 
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,,,,,, ϑϑϑτ  is non-linear function of transversal 

displacement and its derivative, and periodic along ( ) ( ) ( )ttt 321 ,, ϑϑϑ  with periods of π2 , 

( ) 3,2,1, =≈= sr
dt

d
srsr

sr ωτν
ϑ , srω eigen circular frequencies of transversal linear vibrations of thin plate, and ijL  is 

linear differential operators.  
For three frequency vibration regime, we propose first asymptotic approximation of transversal displacements 

( )tyxw ,,  of the plate middle surface points in the following form: 
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where ( ) ( ) ( )ttt
kkk

ϕϑψ +=  is full phases and ( )tRk
 full amplitudes in first asymptotic approximation, defined by 

system of sixth non-linear differential equations of first order. Virtual work of the forces expressed by terms in right 

hand side of PDЕ (1) along virtual transversal displacements ( )tyxw ,,  
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is in the following form [1, 2, 3]:  
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Ordinary non-linear first order differential equations along three amplitudes and there phases in first asymptotic 
approximation of first asymptotic approximation of solution in three frequency non-linear regime expressed by virtual 
work are in the following form: 

( )

( )
∑ ∑

∑

∑














−−









+








−

=
=

=

=

=

321 321

321321321321

2
3

1

2

3

1

4

4

1
2

2

ppp qqq j

j

jjjkk

qqqpppkk

k

qqqpppk

j

j

jjj

k

pm

RR
p

dt

dR

νωω

δϕ

δ
ω

δ

δ
νω

α

ε

WW
i  

( )

( )
∑ ∑

∑

∑














−−









−








−

+−=
=

=

=

=

321 321

321321321321

2
3

1

2

3

1

4

4

2
1

2

ppp qqq j

j

jjjkkk

qqqpppk

k

qqqpppkk

j

j

jjj

kk
k

pRm

RR
p

dt

d

νωω

δ

δ
ω

δϕ

δ
νω

α

ε
νω

ϕ

WW
i , 3,2,1=k       (7) 

 

An example of the application of the modified Krilo-Bogolybov-Mitropolyski asymptotic method  
 
Let’s consider tree-frequency vibration regime of thin elastic plate on non-linear elastic foundation and in linear 

damping, excited with distributed three frequency periodic force described by the following partial differential 
equation in the form: 
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Firs asymptotic approximation of the solution for transversal displacement is in the form (4) and system of non-linear 
differential equation along three amplitudes and three phases in first asymptotic approximation using (6) and (7) is in 
the following form: 
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Conclusions 

 

Obtained system of non-linear differential equation along three amplitudes and three phased in first asymptotic 

approximation for three frequency oscillatory regimes using generalized form (6) and (7), and for special class in the 

form (9) obtained by energy method open large possibility for investigation non-linear phenomena in qualitative form 

as well in numerical experimentation of these system. From (9) we can analyze interactions between non-linear 

modes, appearance of the numerous resonant jumps, and also investigate internal resonances. 
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