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Summary. A non-conservative near-Hamiltonian autonomous dynamical system of the second order is studied. Conditions of existence 
of periodic trajectories are derived basing on the Poincare-Pontryagin generating function I. For neighbourhoods of fixed points of the 
generating Hamiltonian system, the “second iteration” I2 of the Poincare-Pontryagin function is constructed. Simple roots of any of 
functions I and I2 correspond to rough trajectories of the initial conservative system. Examples of systems are provided, for which sets of 
periodic trajectories corresponding to simple roots of these two functions complement each other. 
 

Statement of the problem 
 

An autonomous dynamical system with one degree of freedom with cylindrical phase space is studied. Kinetic and 
potential energy of the system are 2

10.5 ( )T a k     and 2 ( )U a u   respectively, where   is the angular coordinate; 

( ) 0k   , ( ) 0u    – dimensionless functions; a1, a2 – positive dimensional coefficients.  

Assume that the system is near-Hamiltonian. Then equations of motion of the system can be represented in the 
following dimensionless form: 
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Here ( , )Q p  corresponds to the generalized non-conservative force,  is a small positive parameter. Denote 

0 ( , )H p h   the energy level of the generating Hamiltonian system H0. Assume that the right-hand part of (1) is 

analytical with respect to   and p, and 2 –periodic with respect to  . 

The problem is to describe periodic trajectories ( 2 –periodic or cycles) that exist in the system (1) for sufficiently 
small , at least, to estimate the number of such trajectories. The Poincare-Pontryagin approach provides sufficient 
conditions of existence of periodic trajectories in the system (1). 
 

Comparison of sufficient and necessary conditions of existence of periodic trajectories 
 

Let us introduce the following notations:      , 2 ( )f h h u k      for min( ( ))h u  ,  : ( )h u    ; E is 

the set of values of h, for which the curve  ,f h   contains any points with 0 0/ / 0H H p      . 

The Poincare-Pontryagin function I(h) [1] is the average value of the function ( , )Q p  along the curve  0 ,f h  . 

The Poincare-Pontryagin theorem states that if 0h E  is a simple root of I(h), then for sufficiently small  the system 

(1) possesses a rough periodic trajectory emerging from the trajectory  0 ,p f h   of H0 [1, 2]. 

If the right-hand part of (1) is polynomial, the traditional approach to estimating the number of periodic trajectories of 
(1) is to find the number of simple roots of I(h) [3]. 
However, for a non-polynomial system, one can show that special effects take place for 0h E : 

If 0h E  is a root of I(h), then the system (1) may have one or several rough periodic phase trajectories in a small 

neighborhood of  0 ,p f h  . However, (1) may have no periodic trajectory in this domain. 

Moreover, the following can be proved: the necessary condition of existence of a periodic trajectory of the system (1) 
in a small neighborhood of the curve  0 ,f h   for small  is that  0 : ( ) 0h E h I h   . 
 

Example of “additional” periodic trajectories corresponding to the set E 
 

Equations of motion of an aerodynamic pendulum with vertical axis of rotation in a steady wind flow (fig. 1a) can be 

written in the form (1) with 2
0 0.5H p , 2 2( , ) ( sin ) cos ( ( ) cos ( )( sin ))y xQ p p C C p bp            , 

3 10.5 Sr J   , where  arctg cos / ( sin )p     is the instantaneous angle of attack, 2( ) 0.1 sinxC    , 

( ) sin 2yC    are drag and lift aerodynamic coefficients, b is a viscous friction coefficient in the shaft,   is the air 

density, r  is the length of the holder OA, S  is the wing area. The task is to find autorotations with positive values of 
p and auto-oscillations of the system that exist for small . 
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Fig. 1 a) An aerodynamic pendulum (top view); b) Bifurcation diagram of periodic trajectories emerging from trajectories of H0. 

The function I(h) takes the form: 
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  . For each value of b, simple roots of I(h) can be found 

numerically. The value p
 

 for the corresponding periodic trajectory of (1) for 0   can be characterized by the 

value ( ,0) 2f h h . A solid curve in Fig. 1b shows the corresponding bifurcation diagram of 2 –periodic 

trajectories of (1) emerging from trajectories of the system 0H  at 0   for different b (simple roots of I(h) 

correspond to the solid curve and to the line 0p  , except the point  0 ,0b  that corresponds to a multiple root). The 

set E for this system is  0h   and corresponds to the line 0p  . 

To examine existence of “additional” periodic trajectories of (1) corresponding to the set E, perform a change of 

variables and time: /y p  , s   . The system (1) for small p takes the form: 
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The system H1 locally „approximates” the system (1) for sufficiently small p. The function ( )u   for the system H1 

and the qualitative phase portrait of the system H1 are shown in Fig. 2a. Construct a new generating function I2(h), 
roots of which correspond to rough periodic trajectories of (2). For each value of b, simple roots of I2(h) can be found 
numerically. A solid curve at Fig. 2b shows the bifurcation diagram of 2 –periodic trajectories and cycles (which 
cross the line   ) of (1) that emerge from trajectories 2 ( , )f h   of the system 1H  at 0  . 

 
Fig. 2 a) On a phase portrait of the system H1; b) Bifurcation diagram of periodic trajectories emerging from trajectories of H1. 

Comparing fig. 1b and fig. 2b, one can see, in particular, that a rough cycle is detected for 0b b  at the second 

“iteration” of the Poincare-Pontryagin approach (not at the first). 
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