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Inverse Scattering Problems for the Perturbed Biharmonic Operator
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Summary. Some inverse scattering problems for operator of order 4 which is the perturbation (in smaller terms) of the biharmonic
operator are considered. The coefficients of this perturbation are assumed to be from some Sobolev spaces (they might be singular). The
classical (as for the Schrödinger operator) scattering theory is developed for this operator of order 4. The inverse scattering problems
are considered and their uniqueness is proved. The method of Born approximation and an analogue of Saito’s formula are justified for
this operator of order 4.

One-dimensional case

The motivation to study nonlinear operators of order four can be found for instance in the theory of vibrations of beams
(in the simplest one-dimensional model) and the study of elasticity. Indeed, by looking for the time-harmonic solutions
U(x, t) = u(x)e−iωt to the nonlinear beam equation

∂2tU(x, t) + ∂4xU(x, t) +mU(x, t) + |U(x, t)|pU(x, t) = 0, m > 0,

we arrive to the equation
u(4)(x) + (m+ |u|p)u(x) = ω2u(x), x ∈ R.

We consider one-dimensional quasi-linear 4th order equation of the form

L4u(x) := u(4)(x) + q1(x, |u|)u′(x) + q0(x, |u|)u(x) = k4u(x), x ∈ R,

where u(x) denotes, for example, the deflection (displacement) at the point x of the ideal beam, k 6= 0 is real number
and the potentials q1(x, |u|) and q0(x, |u|) are complex-valued (in general) and integrable. By Lp(R), 1 ≤ p < ∞, and
W 1

1 (R) we denote Lebesgue and Sobolev spaces on the line with the norms

‖f‖Lp(R) =

 ∞∫
−∞

|f(x)|p dx

 1
p

, ‖f‖W 1
1 (R) = ‖f‖L1(R) + ‖f ′‖L1(R).

We use also the spaces: L∞(R) and Ht(R), with the norms

‖f‖L∞(R) = ess sup
x∈R
|f(x)|, ‖f‖2Ht(R) =

∞∫
−∞

(1 + |ξ|2)t|Ff(ξ)|2 dξ,

where Ff is the Fourier transform of f , that is

Ff(ξ) =
1√
2π

∞∫
−∞

eixξf(x) dx.

In the problems that we consider the main role is played by the special solutions of the equation L4u(x) = k4u(x), i.e.,
the solutions of the form (there are also exponentially growing solutions of this equation)

u(x, k) = u0(x, k) + usc(x, k), u0(x, k) = eikx,

where the scattered part usc(x, k) satisfy the Sommerfeld radiation conditions at the infinity in the one-dimensional case,
i.e. (

∂

∂|x|
− ik

)
usc(x, k) = o(1), |x| → ∞,(

∂

∂|x|
− ik

)
(usc(x, k))

′′
x = o(1), |x| → ∞.

In that case usc is the unique solution of the so-called Lippmann-Schwinger integral equation

u(x, k) = u0(x, k)−
∞∫
−∞

G+
k (|x− y|)(q1(y, |u|)u′(y) + q0(y, |u|)u(y)) dy,
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where G+
k is the outgoing fundamental solution of the one-dimensional Helmholtz operator d4

dx4 − k4. i.e., the kernel of
the integral operator(

d4

dx4
− k4 − i0

)−1
=

1

2k2

((
− d2

dx2
− k2 − i0

)−1
−
(
− d2

dx2
+ k2

)−1)
.

This function G+
k (|x|) is equal to

G+
k (|x|) =

iei|k||x| − e−|k||x|

4|k|3
.

The first and second derivatives of G+
k with respect to x can be calculated as

(G+
k (|x|))′x =

−ei|k||x| + e−|k||x|

4k2
sign(x), x 6= 0,

(G+
k (|x|))′′x = − ie

i|k||x| + e−|k||x|

4|k|
, x 6= 0,

It can be easily checked also that G+
k satisfies for any k > 0 the one-dimensional Sommerfeld radiation conditions at the

infinity in the form (
∂

∂|x|
− ik

)
G+
k (|x|) = o(1), |x| → ∞,(

∂

∂|x|
− ik

)(
G+
k (|x|)

)′′
x

= o(1), |x| → ∞.

This function G+
k (|x|) and its derivatives satisfy also the following uniform estimates

|G+
k (|x|)| ≤ 1

2|k|3
, |(G+

k (|x|))′x| ≤
1

2k2
, |(G+

k (|x|))′′x| ≤
1

2|k|
.

Using these estimates for G+
k we prove that for |k| large there is a unique solution of the Lippmann-Schwinger equation

and this solution satisfies the estimates

‖u− u0‖L∞(R) ≤
c0
|k|2

, ‖u′ − iku0‖L∞(R) ≤
c0
|k|
, u0 = eikx,

uniformly in |k| ≥ c0 with c0 > 0 depending on the norms of q1 and q0, and admits the following asymptotical represen-
tations:

u(x, k) = a(k)eikx + o(1), u(x, k) = eikx + b(k)e−ikx + o(1), x→ ±∞,

respectively, where the coefficients a(k) and b(k) are defined as

a(k) = 1− i

4k3

∞∫
−∞

e−iky (q1(y, |u|)u′(y) + q0(y, |u|)u(y)) dy,

b(k) = − i

4k3

∞∫
−∞

eiky (q1(y, |u|)u′(y) + q0(y, |u|)u(y)) dy

and they are called the "transmission" and the "reflection" coefficients, respectively. Defining the solution u(x, k) for
negative k as u(x, k) := u(x,−k) we obtain that a(k) = a(−k) and b(k) = b(−k) for negative k. And we put
b(k) = 0 for |k| < 2c0. Hence, we have well-defined the reflection coefficient b(k) for all k ∈ R. The inverse problem
that considered here is to extract some information about the potentials q0 and q1 from the knowledge of the reflection
coefficient b(k) for |k| arbitrary large.
The properties of u(x, k) allow us to conclude that for k → +∞

b(k) ≈ − i
√

2π

4k3
F (β)(2k),

where β(y) = − 1
2q
′
1(y, 1) + q0(y, 1). This asymptotic leads to the direct scattering Born approximation uB and to the

inverse scattering Born approximation qB , respectively

uB(x, k) = eikx − i
√

2π

4k3
F (β)(2k)e−ikx,
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i.e., we may substitute our scattering solution by this formula which includes only the potential β. The asymptotical
representations for u(x, k) for large x can be considered as the analog of the one-dimensional Sommerfeld radiation
condition for this operator of order 4. But what is more important, the asymptotic of u(x, k) (or of the reflection coefficient
b(k)) for large k justifies the following definition which plays the crucial role in the inverse scattering problem.
The inverse scattering Born approximation qB(x) of the potential β is defined by

qB(x) := F−1
(

i

2
√

2π
k3b

(
k

2

))
,

where F−1 denotes the inverse Fourier transform on the line and the equality is considered in the sense of tempered
distributions.
Denoting h1(x) := q1(x, 1) and h0(x) := q0(x, 1) we assume some additional smoothness conditions for q1 and q0.
Suppose that the following representations hold

q0(x, 1 + s) = h0(x) + q∗0(x, s∗0)s, q1(x, 1 + s) = h1(x) + q∗1(x, 1)s+ q∗1(x, s∗∗1 )
s2

2
,

where |s∗0|, |s∗1| < |s|, h1 ∈W 1
1 (R), q∗1 ∈ L1(R)∩Lp(R) for some p > 1, and q∗0 and q∗1 belong to L1(R) in x uniformly

in s, |s| < s0, for some 0 < s0 < 1.
The following result is valid: Under the smoothness conditions for q0 and q1 mentioned above the inverse scattering Born
approximation qB admits the representation

qB(x) = <(β)(x) +
1

π
p.v.

∞∫
−∞

=(β)(y)

x− y
dy (mod C0(R)),

where C0(R) denotes the space of all continuous functions that vanish at the infinity.
If the potentials q1 and q0 are real-valued functions then this result says that

qB(x)− β(x) ∈ C0(R),

that is, all singularities and jumps of the function − 1
2q
′
1(x, 1) + q0(x, 1) can be uniquely determined by the inverse scat-

tering Born approximation with very limited data - we need to know the reflection coefficient (among other four coeffi-
cients) only for the value of the spectral parameter k which is arbitrary large.
One more example came from the nonlinear optics. Let us assume that q1 ≡ 0 and q0 corresponds to the cubic-quintic
type of nonlinearity, that is q0(x, |u|) = p1(x)|u|2 + p2(x)|u|4, where p1(x) and p2(x) are unknown functions which are
equal to the unknown constants p1 and p2 on the unknown interval [a, b] and zero outside of this interval. Then the main
result gives us that using inverse scattering Born approximation we may reconstruct this unknown interval [a, b] and the
sum p1 + p2 of these unknown constants p1 and p2.

Three-dimensional case

Concerning the scattering theory in three dimensions we have the following. The motivation to study operators of higher
order (bigger than 2) appears for example in the study of elasticity and the theory of vibrations of beams. As a concrete
example, the beam equation

∂2tU(x, t) + ∆2U(x, t) +mU(x, t) = 0

under time-harmonic assumption U(x, t) = u(x)e−iωt results in the equation

∆u(x) +mu(x) = ω2u(x), x ∈ R3.

Other examples of biharmonic problems include hinged plate configuration, described by equations of the form

∆2u(x) = f(x), x ∈ Ω, u(x) = ∆u(x) = 0, x ∈ ∂Ω

with the so-called Navier boundary conditions.
We consider the operator of order 4 in the form

L4u(x) := ∆2u(x) + 2i ~W (x)∇u(x) + i(∇ ~W )u(x) + V (x)u(x), x ∈ R3,

with real-valued functions ~W and V . Our basic assumptions for the coefficients are:

~W (x) ∈W 1
p,σ(R3), V (x) ∈ Lpσ(R3), 3 < p ≤ ∞, σ >

3

p′
,

1

p
+

1

p′
= 1,
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where the weighted Lebesgue space Lpσ(R3) is defined by the norm

‖f‖Lpσ(R3) :=

∫
R3

(1 + |x|)σp|f(x)|p dx

 1
p

and the Sobolev space is defined by W 1
p,σ(R3) := {f ∈ Lpσ(R3)|∇f ∈ Lpσ(R3)}. And by Hs(R3) we denote L2−based

Sobolev spaces with the smoothness index s ≥ 0 defined by the norm

‖f‖Hs(R3) :=

∫
R3

(1 + |ξ|2)s|Ff(ξ)|2 dξ

 1
2

,

where F denotes the three-dimensional Fourier transform

Ff(ξ) =

∫
R3

ei(x,ξ)f(x) dx,

and the weighted Sobolev space Hs
δ (R3), s ≥ 0, we define by Hs

δ (R3) := {f ∈ L2(R3)|(1 + x2)δf ∈ Hs(R3)}.
The operator L4 with these coefficients is symmetric in L2(R3), semi-bounded from below and therefore has Friedrichs
self-adjoint extension with domain H4(R3). We are looking for the scattering solutions of this equation in the form (the
same as in one-dimensional case)

u(x, k, θ) = eik(x,θ) + usc(x, k, θ),

where θ ∈ S2 is the angle of the incident wave, and usc(x, k, θ) satisfies the Sommerfeld radiation conditions at the
infinity (

∂

∂|x|
− ik

)
usc(x, k, θ) = o

(
1

|x|

)
, |x| → ∞,(

∂

∂|x|
− ik

)
∆usc(x, k, θ) = o

(
1

|x|

)
, |x| → ∞.

These scattering solutions are the unique solutions of the analogue of Lippmann-Schwinger equation for 4th order operator

u(x, k, θ) = eik(x,θ) −
∫
R3

G+
k (|x− y|)

(
2i ~W (y)∇u(y) + Ṽ (y)u(y)

)
dy,

where Ṽ = i∇ ~W + V and the outgoing fundamental solution of three-dimensional operator ∆2 − k4 is equal to

G+
k (|x|) =

ei|k||x| − e−|k||x|

8π|x|k2
.

Under the above conditions for ~W and V for k > 0 large enough there exists a unique solution u = u0+usc, u0(x, k, θ) =
eik(x,θ), of this integral equation such that usc = usc(x, k, θ) belongs to the weighted Sobolev space H1

−σ2
(R3) and it can

be obtained as the series of iterations

usc(x, k, θ) =

∞∑
j=0

Lj+1
k u0(x, k, θ),

where Lk denotes the integral operator

Lkf(x) = −
∫
R3

G+
k (|x− y|)

(
2i ~W (y)∇f(y) + Ṽ (y)f(y)

)
dy.

Moreover, the following estimate holds

‖usc‖H1
−σ

2
(R3) ≤

C

k
, k ≥ k0 > 0,

with k0 large enough and with constant C > 0 which depends only on the corresponding norms of ~W and V . This
function usc actually belongs to the space H2

−σ2
(R3) with uniformly bounded in k ≥ k0 norm in this space.

The conditions for ~W and V allow us to obtain the following asymptotical as |x| → ∞ representation (k ≥ k0 and fixed):

u(x, k, θ) = eik(x,θ) − eik|x|

8π|x|
A(k, θ, θ′) + o

(
1

|x|

)
, |x| → ∞,
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where θ′ = x
|x| is the angle of observation. Here the function A(k, θ, θ′) is called the scattering amplitude and is defined

by

A(k, θ, θ′) =
1

k2

∫
R3

e−ik(y,θ
′)
(

2i ~W (y)∇u(y, k, θ) + Ṽ (y)u(y, k, θ)
)
dy.

The conditions for the coefficients ~W and V guarantee that this function A(k, θ, θ′) is continuous and bounded with
respect to all its arguments k, θ, θ′. And this function A(k, θ, θ′) gives us the data for the inverse scattering problems. The
first result is the analogue of Saito’s formula for 4th order operator.
If ~W ∈W 1

p,δ(R
3) and V ∈ Lpδ(R3) where 3 < p ≤ ∞ and δ > 3− 3

p , then the limit

lim
k→+∞

k4
∫

S2×S2

e−ik(θ−θ
′,x)A(k, θ, θ′) dθ dθ′ = 8π2

∫
R3

V (y)

|x− y|2
dy

holds uniformly in x ∈ R3.
An important consequence of Saito’s formula is the following uniqueness result for the inverse scattering problem with
full data.
Let ~W1, V1 and ~W2, V2 be as before. If the corresponding scattering amplitudes A1(k, θ, θ′) and A2(k, θ, θ′) coincide for
some sequence kj → +∞ and for all angles θ, θ′ ∈ S2 then the coefficients V1 and V2 are equal a.e. Even more is true -
under the same assumptions as in Saito’s formula we have the following representation

V (x) =
1

16π4
lim

k→+∞
k4

∫
S2×S2

e−ik(θ−θ
′,x)A(k, θ, θ′)|θ − θ′| dθ dθ′

that must be understood in the sense of tempered distributions.
As a different data for the reconstruction of unknown potential V (x) (the function ~W in the operator L4 might be arbitrary
from the space W 1

p,σ(R3) in that case) we consider the kernel Gp(x, y, k) of the integral operator (L4−k4− i0)−1 which
can be obtained as the solution of the integral equation

Gp(x, y, k) = G+
k (x, y, k)−

∫
R3

G+
k (x, z, k)

(
2i ~W (z)∇zGp(z, y, k) + Ṽ (z)Gp(z, y, k)

)
dz.

The solvability of this equation can be obtained by the same manner as the solvability of the Lippmann-Schwinger equa-
tion for the scattering solutions. As the result, we have that

‖(L4 − k4 − i0)−1f‖H1
−σ

2
(R3) ≤

C

k2
‖f‖L2

σ
2
(R3), k ≥ k0 > 0,

where σ is as before. This fact implies that Gp(x, y, k) has the same estimates as G+
k (x, y, k) since it can be obtained as

the series of iterations of G+
k . More precisely, the following uniform estimate (with respect to x, y ∈ R3 and k ≥ k0 > 0

with k0 large enough) holds

|Gp(x, y, k)−G+
k (|x− y|)| ≤ C

k3
.

The knowledge of the function Gp(x, y, k) for large values of k and the fact that this function solves the corresponding
integral equation allow us to calculate at every (fixed) point ξ the Fourier transform of V by the formula

F (V )(ξ) = lim
x,y→∞,k→+∞

64π2k4|x||y|e−ik(|x|+|y|)
(
G+
k (|x− y|)−Gp(x, y, k)

)
,

where ξ = −k
(
x
|x| + y

|y|

)
(fixed) and where F denotes the three-dimensional Fourier transform. Here we assumed that

either ~W and V have compact support or have some special behavior at the infinity like O(|x|−µ) with some µ > 3. This
result implies one more uniqueness result in the inverse scattering problem. Namely, if G(1)

p (x, y, k) and G(2)
p (x, y, k) are

two different kernels which correspond to two different pairs of the coefficients ~W1, V1 and ~W2, V2, and ifG(1)
p (x, y, k) =

G
(2)
p (x, y, k) for all x, y, k →∞, then V1(x) = V2(x) a.e.

Our next steps are devoted to the considerations of the direct and inverse scattering Born approximation. Substituting
u = u0 + usc into the scattering amplitude A gives that

A(k, θ, θ′) =
1

k2

∫
R3

e−ik(y,θ
′)
(

2i ~W (y)∇u0(y, k, θ) + Ṽ (y)u0(y, k, θ)
)
dy+

+
1

k2

∫
R3

e−ik(y,θ
′)
(

2i ~W (y)∇usc(y, k, θ) + Ṽ (y)usc(y, k, θ)
)
dy =: AB(k, θ, θ′) +R(k, θ, θ′).
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The function AB(k, θ, θ′) is called the direct Born approximation. It can be easily checked that AB(k, θ, θ′) is actually
equal to

AB(k, θ, θ′) = −2θ

k
F ( ~W )(k(θ − θ′)) +

1

k2
F (i∇ ~W + V )(k(θ − θ′)) =

= −θ + θ′

k
F ( ~W )(k(θ − θ′)) +

1

k2
F (V )(k(θ − θ′)),

and the rest term R(k, θ, θ′) might be estimated appropriately.
The direct Born approximation can solve (somehow) the problem of reconstruction unknown coefficients V and ~W in the
following sense.
Let ξ 6= 0 be an arbitrary vector from R3 and let ω be the unit vector that is orthogonal to ξ. Let also k > 0 be so that
ξ2 ≤ 4k2. If we chose θ and θ′ such that

θ =
ξ

2k
+

ω

2k

√
4k2 − ξ2, θ′ = − ξ

2k
+

ω

2k

√
4k2 − ξ2

then θ, θ′ ∈ S2, ξ = k(θ − θ′) and

F (V )(ξ) =
k2

2
(AB(k, θ, θ′) +AB(k,−θ′,−θ)) ,

√
4k2 − ξ2(F ( ~W )(ξ), ω)R3 =

k2

2
(AB(k, θ, θ′)−AB(k,−θ′,−θ)) .

These equations give us clearly solution for V and curl ~W .
Our next main interest (with respect to real inverse problems) concerns to the particular case θ′ = −θ. This case leads to
the so-called direct backscattering Born approximation, i.e.

AbB(k, θ,−θ) =
1

k2
F (V )(2kθ), A(k, θ,−θ) ≈ 1

k2
F (V )(2kθ).

This direct approximation justifies the following inverse backscattering Born approximation.
The inverse backscattering Born approximation V bB(x) in the operator L4 is defined as

V bB(x) =
1

(2π)3

∞∫
0

k4 dk

∫
S2

e−ik(x,θ)A

(
k

2
, θ,−θ

)
dθ,

where the equality is understood in the sense of tempered distributions. Due to this definition and the definition of the
scattering amplitude we may conclude that

V bB(x) = V (x) + V1(x) + Vrest(x),

where the quadratic form V1(x) (first nonlinear term in the inverse backscattering Born approximation) can be calculated
precisely and it is equal to

V1(x) = − 4

(2π)3
F−1ξ→x

∫
R3

F (Ṽ )(ξ − η)F (Ṽ )(η)

ξ2(η2 − (η, ξ)− i0)(η2 − (η, ξ) + ξ2

2 )
dη

+

+
1

(2π)3
F−1ξ→x

∫
R3

ξF ( ~W )(ξ − η)(ξ + η)F ( ~W )(η)

ξ2(η2 − (η, ξ)− i0)(η2 − (η, ξ) + ξ2

2 )
dη

 .

Here F−1 denotes the inverse Fourier transform in R3 and Ṽ is the complex conjugate of Ṽ = i∇ ~W + V . This precise
formula for V1 and the mentioned above conditions for the coefficients V and ~W of the operator L4 allow us to prove
that V1 (as a function of x) is actually continuous function. Concerning the rest term Vrest using the estimates for usc we
obtain that it belongs to the Sobolev space Ht(R3) with any t < 3

2 . Thus, we have that

V bB(x)− V (x) ∈ Ht
loc(R

3), t <
3

2
,

i.e., this difference belong to the "smoother" space than Lp. This fact means that using the inverse backscattering Born ap-
proximation V bB(x) we can reconstruct all local singularities from Lp(R3) of the unknown potential V (x) (we note that
~W (x) is continuos by the assumptions) for any 3 < p <∞.
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Conclusions

It is shown that the classical inverse scattering Born approximation efficiently works for higher order (and even quasi-
linear) operators with singular coefficients. In particular:

• In one-dimensional case we consider the quasi-linear perturbation of the biharmonic operator and obtained that all
singularities and jumps of the potential β(x) = − 1

2q
′
1(x, 1) + q0(x, 1), where q0, q1 are quasi-linear coefficients of

the perturbed operator, can be uniquely determined using only the reflection coefficient for arbitrary large spectral
parameter k > 0.

• In three-dimensional case we consider the first order perturbation of the biharmonic operator and obtained the
analogue of the classical Saito’s formula together with uniqueness result and with representation formula. These
formulas use only the scattering amplitude with large spectral parameter k as in one-dimensional case. In addition
we are able to formulate the inverse backscattering Born approximation for this type of fourth order operator and
provide the reconstruction of singularities via this Born approximation.

• New data for the inverse scattering problem in three-dimensional case is considered. Namely, it is proved that the
knowledge of the kernel Gp(x, y, k) of the integral operator (∆2 + 2i ~W (x)∇+ i∇ ~W (x) +V (x)− k4− i0)−1 for
large values x, y, k uniquely determines the unknown potential V . Moreover, we obtained the effective formula for
computing this unknown potential V using this new data.


