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Nonlinear traffic modeling for urban road network and relate d robust state estimation
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Summary. The knowledge of road traffic parameters is of crucial importance to ensure state-of-the-art traffic services. Due to the
widespread of today’s information communication technologies the classical approach of road traffic detection has fundamentally
changed. Beside or instead of traditional static traffic sensors the so called floating car data (FCD) has come to the fore.Therefore,
the question arises: how to estimate traffic state from FCD information? Intermittent observations of link travel timesare typical in
urban road networks as the frequency of FCD based observations is time variant and traditional detector stations are notpresent on
all links. Though, one aims to retrieve full information of the network, e.g. average travel times or traffic densities onall links. To
achieve this goal a robust state estimation methodology is proposed via Kalman/H∞ Filter which both involve data fusion and take the
uncertainty of turning rates into consideration. The goal is to reconstruct the whole picture of urban road traffic from currently available
measurement data. Practically, incomplete mosaic pieces of road traffic data are fused and applied to create a reliable traffic estimation
both on link-level and network-level.

Introduction

As fleet management systems, autonomous vehicles and V2X technologies become even more widespread, even more
FCD will be generated by them. Taxis, public transport busesand other vehicles operated by fleet management systems
are sources of FCD even today. Accordingly, emerging new sets of these kinds of information (popularly called big data as
well) can be efficiently exploited for traffic estimation [1]. Since data collected from different sources are heterogeneous
and intermittent, a Kalman Filter based data fusion technique is proposed in this paper dealing with incomplete FCD input
data, which is expected to be more appropriate than the methodologies used in current traffic state estimation systems.
The available web map services typically consider only travel time data and accordingly offer information concerning the
average traffic speed, e.g. Google Maps uses color codes of three states (free flow, medium, and congested traffic). Our
approach, however, targets a more complex traffic estimation based on a macroscopic traffic model beside FCD travel
time measurements, providing traffic density as well as average traffic speed information of all links in the network.

Applied macroscopic traffic models

Urban road network traffic modeling using link-based macroscopic fundamental diagram
Considering a macroscopic approach (individual vehicle dynamics are omitted), for linkz the number of vehicles can
be modeled based on the vehicle-conservation law during[kT, (k + 1)T ] whereT denotes the sample time andk =
0, 1, 2, ... is the discrete time index:

nz(k + 1) = nz(k) + T

[
∑

w∈IM

αw,zqw(k)− qz(k)

]

. (1)

The parameters in Eq. (1) are defined as follows:nz is the number of vehicles on linkz (in passenger car equivalent -
PCE); IM denotes the set of incoming linksw at junctionM , i.e.w ∈ IM ; αw,z ∈ [0, 1] is the turning rate from linkw
to link z; qw denotes the traffic flow from linkw (PCE/T ); qz is the traffic outflow from linkz (PCE/T ).

A crucial point of Eq. (1) is the dynamics of link outflows. A possible approach to describe traffic outflow in a given
network is described by the theory of urban fundamental diagram which was first proposed by [3]. The theory is called
macroscopic fundamental diagram (MFD). This concept has widely been investigated during the past decades, e.g. [8],
[2], [4], [5], [9]. By using the analogy of the MFD concept, the outflowsqw,z andqz can be defined by restricting the traffic
network to link level. This practically means that each linkhas a dedicated MFD model. MFD assumes the following
fundamental relationship:

q = ρ · v, (2)

whereρ denotes the traffic density andv is the space mean speed on a link. There are several formulas available in
the literature forv [14]. In this papaer, one of the basic relationships is used for describing the speed of linkz (called
Pipes-Munjal model [10], which is practically a modified version of Greenshields’ model):

vz(ρ) = vfreez

[

1−

(
ρz

ρjamz

)a]

, (3)

wherevfreez represents the free-flow speed (i.e. no congestion),ρjamz is the jam density (practically a ’bumper-to-bumper’
case within the road link) anda is an empirical parameter. As traffic density is defined as

ρz =
nz

lz
, (4)
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(lz is the link length) Eq. (3) can be recast as follows:

vz(nz) = vfreez

[

1−

(
nz

njam
z

)a]

. (5)

By substituting Eq. (5) into Eq. (2), the link-based traffic flow is derived:

qz = ρzvz =
nz

lz
vfreez

[

1−

(
nz

njam
z

)a]

. (6)

Note that flowqw is also calculated by the formula of Eq. (6) concerning linkw.

Two-fluid model for link-based traffic description
The two-fluid model [6] consideres as the whole traffic flow wascomposed by two flows: the flow of moving vehicles
and the flow of vehicles stopped in traffic lanes (e.g. at red signal, in traffic jams, for freight delivery etc). The model
defines the fraction of stopped vehicles asf s, which can represent the ratio of the time while a floating carcirculating in
a network is stopped divided by its whole travel time:

f s =
T s

T
. (7)

The two-fluid model states thatf s can be given in term of concentration:

f s =

(
ρ

ρjam

)p

, (8)

whereρjam denotes the jam density and parameterp is the measure of quality of the traffic network. Substituting Eq. (4)
into Eq. (8),f s can be rewritten as:

f s =
T s

T
=

( n

njam

)p

. (9)

The two-fluid model is usually applied to characterize a whole traffic network (town or districts). Nevertheless, the two-
fluid approach is also valid for smaller networks. Therefore, a link-based two-fluid model can be given concerning linkz
as follows:

f s
z =

T s
z

Tz
=

(
nz

njam
z

)p

, (10)

whereT s
z is the average stop time of the floating cars going through link z andTz is the average travel time of vehicles on

link z. Sincef s provides us information on queue lengths on links, it gives amore specific description of the traffic state
on links than average travel time or speed would.

Model for link vehicle-count based on time-occupancy measurement
In road traffic technology the most common used sensor types are magnetic sensors and inductive loop-detectors. The
time-occupancy parameter of these is calculated as follows:

ot =

∑
tocc

T
, (11)

where
∑

tocc denotes the sum of all occupancy times while the detector is covered by vehicles during sample timeT .
[11] derives the relationship between time-occupancy measurements of cross-sectional traffic detectors and the road link’s
space-occupancy. Space-occupancy is defined as the ratio ofthe sum of all vehicle lengths and the link length:

osz =

∑
lveh

lz
. (12)

Moreover, by considering a unit vehicle lengthlPCE:

osz =
nz · l

PCE

lz
. (13)

Time and space-occupancy values are quite similar [15], therefore the slight difference between them can be modeled by
an appropriate noise termζ:

otz = osz + ζ =
nz · l

PCE

lz
+ ζ. (14)
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Traffic modeling and measurement

The nonlinear traffic model
The discrete time state space representation of a nonlineardynamics (without control input in this case) can be given by
the following stochastic difference equation:

x(k + 1) = f (x(k), ν(k)) , (15)

with the measurement equation:

y(k) = g (x(k), ζ(k)) , (16)

whereν(k) andζ(k) represent the process and measurement noise respectively.
State vector is composed as follows:

x(k) =










n1(k)
n2(k)
n3(k)

...
nn(k)










, (17)

wherenz denotes the number of vehicles on linkz (z = 1, 2, ..., n).
Based on Eq. (1) the dynamics of each linkz in Eq. (15) is given as

nz(k + 1) = nz(k) + T

[
∑

w∈IM

αw,zqw(k)− qz(k)

]

+ νz(k), (18)

augmented byνz(k) as a noise term in the system.
Applying Eq. (6) for traffic flow dynamics, Eq. (18) finally becomes:

nz(k + 1) = nz(k) + T

[
∑

w∈IM

αw,z
nw(k)

lw
vfreew

[

1−

(
nw(k)

njam
w

)a]

−
nz(k)

lz
vfreez

[

1−

(
nz(k)

njam
z

)a]
]

+ νz(k). (19)

Sample time T can be long, even 15 minutes, therefore, the effect of signal controllers are taken into consideration as an
average value which means that it is not necessary to know thesignal programs.
According to the state space representation form, the measurement equation (16) must be defined as well. Using the
models provided in the previous sections, the following measurements can be defined in the system:

• otz is the time-occupancy on linkz, measured by traffic detectors as given by Eq. (11).

• f s
z =

T s
z

Tz
from Eq. (10) is detected as floating car data (FCD) for a single vehicle. Hence, the mean of all floating

car measurements during the sample time can be calculated as

f̄ s
z =

∑num
i=1 f s

i,z

num
, (20)

wherenum denotes the number of cars measured on linkz. Asp is a constant parameter, Eq. (10) can be rearranged:
(
f̄ s
z

)1/p
=

nz

njam
z

. (21)

Therefore
(
f̄ s

)1/p
is considered as a measured value.

Finally, the discrete time measurement equation is given asfollows:


















ot1(k)
ot2(k)

...
otn(k)

(
f̄ s
1

)1/p
(k)

(
f̄ s
2

)1/p
(k)

...
(
f̄ s
n

)1/p
(k)


















︸ ︷︷ ︸

y(k)

=




















lPCE

l1
lPCE

l2
. . .

lPCE

ln
1

njam
1

1

njam
2

. . .
1

njam
n




















︸ ︷︷ ︸

C










n1(k)
n2(k)
n3(k)

...
nn(k)










︸ ︷︷ ︸

x(k)

+





















ζdet1 (k)
ζdet2 (k)
ζdet3 (k)

...
ζdetn (k)
ζFCD
1 (k)
ζFCD
2 (k)
ζFCD
3 (k)

...
ζFCD
n (k)





















︸ ︷︷ ︸

ζ(k)

(22)



ENOC 2017, June 25-30, 2017, Budapest, Hungary

Linearization of the nonlinear traffic model
To better deal with the nonlinear dynamics given in the previous section, the linearization technique via Taylor series[13]
can be used for Eqs. (15)-(16), i.e. the real statex and measurementy vectors are approximated:

x(k + 1) ≈ f(x̂(k), 0) +
∂f(x̂(k), 0)

∂x
(x(k)− x̂(k)) +

∂f(x̂(k), 0)

∂ν
ν(k), (23)

y(k) ≈ g(x̂(k), 0) +
∂g(x̂(k), 0)

∂x
(x(k)− x̂(k)) +

∂g(x̂(k), 0)

∂ζ
ζ(k), (24)

wherex̂(k) denotes the estimate of the state at discrete time stepk.
Practically, the linearization means the calculation of Jacobian matrices of partial derivatives of functions (15)-(16):

A(k) = ∂f(x̂(k),0)
∂x , (25)

Bν(k) =
∂f(x̂(k),0)

∂ν , (26)

C(k) = ∂g(x̂(k),0)
∂x , (27)

Cζ(k) =
∂g(x̂(k),0)

∂ζ . (28)

By using the simplified notation of (25)-(28) for Eqs.(23)-(24), the following formulas are obtained:

x(k + 1) ≈ x̃(k) +A(k) (x(k)−x̂(k)) +Bν(k)ν(k), (29)

y(k) ≈ ỹ(k) + C(k) (x(k)−x̂(k)) + Cζ(k)ζ(k), (30)

wherex̃(k) andỹ(k) are the approximated state and measurement variables.
Accordingly, the linearized matrices must be determined. The formula described by (25) is meant as differentiation by
each element of state vectorx. Therefore, for the state equation (19) two basic cases are given:

1. If the differentiation is done by state variable indexed by z (i.e.nz):

∂nz(k + 1)

∂nz
= 1− T

vfreez

lz

(

1− (a+ 1)

(
nz(k)

njam
z

)a)

. (31)

2. If the differentiation is done by state variable indexed by w (i.e.nw):

∂nz(k + 1)

∂nw
= αw,zT

vfreew

lw

(

1− (a+ 1)

(
nw(k)

njam
w

)a)

. (32)

Jacobian matrixBν is resulted as

Bν(k) = I. (33)

The Jacobian matrices of the measurement equation (22) are given as follows:

C =




















lPCE

l1
lPCE

l2
.. .

lPCE

ln
1

njam
1

1
njam
2

.. .
1

njam
n




















, (34)

Cζ(k) = I. (35)

Robust state estimation

Since we have a system of which the noise descriptions (the statistical properties of turning rates) are unknown, Kalman/H∞

filter is applied to resolve robust state estimation problem, according to the description provided in [12].
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Uncertainty in the traffic model
Turning rateαw,z is a quite ambiguous point of the traffic model described in Eq. (19). Obviously, one is able to estimate
this term based on previous measurements. However, exact reliable values cannot be found for turning rates as they are
strongly stochastic variables. Therefore, a robust approach can be applied for state estimation. By following the method
of robust Kalman/H∞ filtering for a linear system [12], uncertainties can be encapsulated into the linearized system model
(29) derived previously:

x(k + 1) ≈ x̃(k) + (A(k) + ∆A(k)) (x(k)−x̂(k)) +Bν(k)ν(k), (36)

where∆A denotes the uncertainty matrix concerning the turning rates. The uncertainty matrix is assumed to be of the
following structure:

∆A(k) = M(k)Γ(k)E(k), (37)

whereM(k) andE(k) are known real constant matrices of appropriate dimensions, andΓ(k) is an unknown real time-
varying matrix satisfying the following inequality:

ΓT (k)Γ(k) ≤ I. (38)

Kalman/H∞ filter design with data fusion
Apart from robust state estimation, the designed filter mustalso be able to fuse data collected from different sensor
sources. These sensors can either be installed into the roadinfrastructure or can be in connection with the movement of
vehicles, for example floating car data (FCD), or floating mobile data (FMD). On those links where there is at least one
built-in road traffic sensor, data is generated continuously, therefore, the estimation of the Kalman Filter can alwaysbe
updated, even if FCD is available. On links where no built-indetector is installed, the continuous Kalman Filter update
cannot be guaranteed, since measurement data is only generated if there is a vehicle equipped with such device. If there
is no measurement data in a period, the intermittent Kalman Filter technique is used, i.e. the state estimate of the previous
time-step is simply propagated [7].

Example

A minimal example modelling a simple junction (see Fig.1) isprovided to show how the proposed method can be applied.
The state of the network is represented by the number of vehicles on links while traffic information is collected from
on-street traffic detectors and moving vehicles.

Figure 1: Example network

The discrete time system model is given as follows:







n1(k + 1)
n2(k + 1)
n3(k + 1)
n4(k + 1)






=











n1(k) + T
∑4

w=2 αw,1
nw(k)
lw

vfreew

[

1−
(

nw(k)

njam
w

)a]

− T n1(k)
l1

vfree1

[

1−
(

n1(k)

njam
1

)a]

+ ν1(k)

n2(k) + d2(k)− T n2(k)
l2

vfree2

[

1−
(

n2(k)

njam
2

)a]

+ ν2(k)

n3(k) + d3(k)− T n3(k)
l3

vfree3

[

1−
(

n3(k)

njam
3

)a]

+ ν3(k)

n4(k) + d4(k)− T n4(k)
l4

vfree4

[

1−
(

n4(k)

njam
4

)a]

+ ν4(k)











, (39)

wheredw(k) denotes vehicle input demand appearing at the boundary of the traffic network entering to link indexed by
w = 2, 3, 4.
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Assuming that traffic detector stations are only present on link 2 and 4 the discrete time measurement equation is given as
follows:













ot2(k)
ot4(k)

(
f̄ s
1

)1/p
(k)

(
f̄ s
2

)1/p
(k)

(
f̄ s
3

)1/p
(k)

(
f̄ s
4

)1/p
(k)













=














lPCE

l2
lPCE

l4
1

njam
1

1

njam
2

1
njam
3

1
njam
4




















n1(k)
n2(k)
n3(k)
n4(k)






+











ζ2(k)
det

ζ4(k)
det

ζ1(k)
FCD

ζ2(k)
FCD

ζ3(k)
FCD

ζ4(k)
FCD











(40)

The linearization provides:

A(k) =










1−
Tvfree

1

l1
(1−

(a+1)na
1
(k)

(njam
1

)a
) α2,1T

vfree
2

l2
(1−

(a+1)na
2
(k)

(njam
2

)a
) α3,1T

vfree
3

l3
(1−

(a+1)na
3
(k)

(njam
3

)a
) α4,1T

vfree
4

l4
(1−

(a+1)na
4
(k)

(njam
4

)a
)

1−
Tvfree

2

l2
(1−

(a+1)na
2
(k)

(njam
2

)a
)

1−
Tvfree

3

l3
(1−

(a+1)na
3
(k)

(njam
3

)a
)

1−
Tvfree

4

l4
(1−

(a+1)na
4
(k)

(njam
4

)a
)











.
(41)

Bν(k) = I. (42)

The Jacobian matrices of the measurement equation (22) are given as follows:

C =














lPCE

l2
lPCE

l4
1

njam
1

1

njam
2

1
njam
3

1
njam
4














, (43)

Cζ(k) = I. (44)

The next step is to determine the uncertainty matrix∆A modeling the ambiguity of the turning rates. According to the
formula of (37),M(k) andE(k) are defined as follows:

M(k) =








0 T
vfree
2

l2
(1−

(a+1)na
2
(k)

(njam
2

)a
) T

vfree
3

l3
(1−

(a+1)na
3
(k)

(njam
3

)a
) T

vfree
4

l4
(1−

(a+1)na
4
(k)

(njam
4

)a
)

0 0 0 0
0 0 0 0
0 0 0 0







, (45)

E(k) =







0 0 0 0
0 δ2,1 · α2,1 0 0
0 0 δ3,1 · α3,1 0
0 0 0 δ4,1 · α4,1






, (46)

whereδ2,1, δ3,1 andδ4,1 are uncertainty factors that weight turning rates. For example,δ = 0.1 expresses that the applied
nominal turning ratesαw,z of the model might vary by±10% .

Simulation
The operation of the filter is tested based on simulation datathat were generated using PTV Vissim microscopic traffic
simulation software. The network shown in Fig. 1 was implemented into PTV Vissim where the state of traffic was
evaluated in 1 minute long periods. Occupancy data were collected from links 2 and 4 and two-fluid data were collected
from each link. The filter estimates from these input data thenumber of vehicles on the links. The exact number of
vehicles were also measured and were compared to the estimated number provided by the filter. The expected operation
of the filter can be seen in Fig 2, even if the performance of themodel does not reach this accuracy so far.
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Figure 2: Expected result of simulation (n1 is the number of vehicles on link 1)

Conclusions

Intermittent data generated by vehicles and transport infrastructure is not reliable for estimating the state of the whole
network. Therefore, the methodology presented in this paper uses both link-based and network-based macroscopic traffic
models of which the results are combined by a data fusion technique using Kalman/H∞ filter. The model uses a ro-
bust approach, therefore uncertainties in the traffic model(especially in turning rates) are treated as well, however,the
performance of the simulation example needs to be developed.
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