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Summary. This paper presents and studies the novel Generalized Fractional Order Reset Element (GFrORE). Fractional order filter
realizations which enable control over the Q-factor of the filter is studied. Subsequently, the concept of reset in control system is applied
to fractional order filters with arbitrary reset matrices, resulting in additional reset parameter γ along with fractional order α, which can
be used to optimize the filter design. A general proof of stability is provided and sinusoidal input describing function method is used
to analyse the effect of the generalized reset especially on its ability to reduce phase lag. Reset action is also found to affect corner
frequency of the filters for negative values of γ and a rule of thumb is presented to design the filters by taking this into consideration.
The Q-factor of the designed filter is also affected by reset action and this is used as an advantage in the presented numerical example
for its use in the field of motion control applications.

Introduction

Fractional Order Calculus (FOC) has constantly been gaining prominence with active research in diverse applications.
In the field of controls, design of controllers using FOC in comparison with classical integer-order controllers provides
additional capability and flexibility in tuning and is seen favourably by industry. This has seen successful practical
implementations presented in literature with utilization in cruise control by HosseinNia et al. [1], voltage regulation by
Zamani et al. [2], control of time-delay systems by Hamamci [3], and fractional order systems by Zhao et al. in [4]
and Ying et al. in [5]. Several works specifically dealing with the design, tuning and optimization of fractional order PID
further shows its growing importance [6, 7, 8]. Despite its advantage, controllers designed using FOC belong to the family
of linear controllers and hence suffer from fundamental limitations in linear control like water-bed effect, mid-frequency
disturbance rejection etc.
Reset control is a non-linear technique which was first initiated by Clegg for a simple integrator [9]. This technique resets
the state/s of the controller to zero when some pre-defined conditions are met, with the most commonly used condition
being when the error hits zero. This reset concept has been extended by Horowitz and Rosenbaum to First Order Reset
Element (FORE) [10] and by Hazeleger et al. to Second Order Reset Element (SORE) [11], where the reset action
dynamics are presented from the linear control system perspective. The advantage of reset is seen in frequency domain
as reduced phase lag without any effect in magnitude. Generalized FORE (GFORE) introduced by Guo et al. [12] further
provides an additional parameter γ for greater flexibility in obtaining the required phase curve. These have been used
advantageously to overcome the limitations of linear controllers mentioned earlier in several works ranging from process
control to electrical systems, and motion control [13, 14, 15, 16, 17, 18].
It should come as no surprise that the advantages of FOC and reset have been combined with the fundamentals of fractional
order Clegg integrator by Monje et al. [19], Valério et al. [20], HosseinNia et al. [21, 22, 23]. In this work, we present the
novel Generalized Fractional Order Reset Element (GFrORE). Realization of fractional order filters and the advantages
of one over the other are presented in the next section. The main contribution GFrORE is presented and analysed using
describing function analysis in the subsequent section. The effect of having two additional parameters in comparison to
an integer order linear filter, α to determine the fractional order and γ for the resetting matrix is studied. A numerical
example from the field of motion control is provided to highlight the advantage of using GFrORE in practice followed by
conclusions.

Fractional order filters

First and second order filters are the most common filters studied in literature and utilized in controls. Hence we focus
mainly on fractional order filters with order in the range [0.5, 2.5], where the first and second order filters can be considered
as candidates for representation of fractional order filters as shown below.

Hα(s) =
ω0

α

sα + ω0
α
∀ α ∈ [0.5, 2.5]

H2α(s) =
(ω0

2)α

(s2)α + 2βr(ω0s)
α

+ (ω0
2)α

∀ 2α ∈ [0.5, 2.5]

where ω0 is the corner frequency and βr is the damping coefficient.
However, the use of Hα(s) does not provide control of the filter Q-factor to the designer and worse results in an unstable
filter for order greater than 2 (α > 2). Hence, the realization using H2α(s) is studied and used for realization of GFrORE
later. This results in a stable realization with the additional advantage where the required Q-factor can be achieved using
the formula provided below.

βr =
1

2Q
− cos

(απ
2

)
(1)
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This realization can be used to realize even first order filters (instead of the conventional way), to get the required Q as
shown in Fig. 1. While values of βr greater than −cos

(
απ
2

)
result in constantly decreasing values of Q-factor, smaller

values result in unstable realizations of the fractional order filters.
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Figure 1: Bode plots of first order filter realized using H2α(s) for different Q-factors

Generalized Fractional Order Reset Element

Generalized Reset Element
An integer order reset element is defined as

GRE =


ẋr(t) = Arxr(t) +Bre(t), ∀e(t) 6= 0

xr(t
+) = Aρxr(t), ∀e(t) = 0

ur(t) = Crxr(t) +Dre(t)

where Ar, Br, Cr and Dr are the state matrices. The second equation is called reset law and Aρ is the resetting matrix
for the states and is defined as in [12] as

Aρ = γI

with I being the corresponding identity matrix and γ ∈ R. Further γ = 1 results in the linear filter with no reset.
The stability criteria for a generic reset system is provided in [12] and it is found that the system has a globally asymptot-
ically stable 2π/ω-periodic solution under sinusoid input with arbitrary frequency ω > 0 iff

|λ(Aρe
π
ωA)| < 1 (2)

Sinusoidal input describing function analysis can be used to obtain frequency behaviour of the filter as in [12] as

G(jω) = Cr
T (jω −Ar)−1(I + jΘρ(ω))Br (3)

where,

Θρ(ω) =
2

π

e
πAr
ω + I

Aρe
πAr
ω + I

I −Aρ
Ar2

ω2 + I

The advantage of reset action is in reduced phase lag compared to its linear counterpart. However, it is seen from Eqn. 3
that this is achieved only when Θρ(ω) > 0 which adds an additional constraint on Aρ as

e−
π
ωA < Aρ < I (4)

The stability criteria of Eqn. 2 and reduced phase lag requirement which leads to Eqn. 4 are satisfied for all frequencies
only when |γ| ≤ 1. It must be noted that while Eqn. 2 can be used to analyse the overall stability of a reset system,
describing function based frequency response can be also be used for the same in open loop by using Gain Margin (GM),
Phase Margin (PM) and Modulus Margin (MM - inverse of the infinity norm of the sensitivity function) as indicators of
stability.
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GFrORE
Practical realization of GFrORE requires the approximation of fractional order filter H2α(s). CRONE approximation
is used in this work [24]. This CRONE approximated transfer function is converted into state space representation,
upon which reset can be applied. The stability criteria submitted for the generalized reset element is applicable for the
approximated GFrORE. State space representation is also used to obtain the describing function based frequency response
using Eqn. 3. These are studied for values of 2α (order of filter) in range [0.5, 2.5], while γ is varied in range [−1, 1].
The frequency responses obtained for a 1.5th order filter for different values of γ are shown in Fig. 2. A study of the
frequency responses reveals 3 interesting properties which are dealt with below.
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Figure 2: Bode plots of GFrORE obtained using describing function for order 2α = 1.5 for different values of γ

Reduced phase lag
Fig. 2 clearly shows the significant reduction in phase lag of GFrORE compared to its linear counterpart (γ = 1) with the
amount of reduction related to γ which is the level of non-linearity. In the case of GFORE presented and studied in [12],
the relation between phase lag decrease and γ is close to linear. However, an analysis of GFrORE shows a non-linear
relation between phase lag and γ, with non-linearity increasing as the order increases. This is shown in Fig. 3. It is also
noticed that the phase lag converges for all values of α when the resetting factor γ ≤ −0.2. However, this change in
phase lag for different values of γ does not affect the magnitude slope as seen in Fig. 2. Its effect on the corner frequency
is dealt with later. This property of GFrORE highlights the advantage of applying generalized reset to fractional order
filters, since α can be chosen to obtained the required magnitude slope, while the value of γ can be chosen to obtain the
necessary phase lag.

Change in corner frequency
An interesting property seen with GFrORE is in the shifting of corner frequency for values of γ ≤ 0. While the magnitude
slope is determined by 2α, it is noticed that the corner frequency shifts away from ω0 to ω′0 > ω0, with the value of ω′0
moving exponentially away from ω0 with a decreasing value of γ. This is shown in Fig. 4 for ω0 = 1. This increase
is extremely similar in value for all values of α considered and can be linearised to get the approximate relation (rule of
thumb) as:

ω′0 =


ω0, for γ > 0

10
−γ
0.8 ω0, for − 0.8 ≤ γ ≤ 0

10
−γ−0.625

0.175 ω0, for − 0.975 ≤ γ ≤ −0.8

This property of shifted corner frequency is not reflected in the phase plot. This rule of thumb can be used for the design
of GFrORE, by determining the value of ω0 for the corner frequency ω′0 where the filtering action is required to start.

Effect on Q-factor
It is also noticed that reset affects the Q-factor by significantly reducing the resonance peak. So the Q-factor of GFrORE
(say Qr) is not the same as that of the designed fractional order filter. As a result of this large reduction, the magnitude of
resonance peak does not vary significantly for different values of βr. However, the phase behaviour is affected and this is
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Figure 3: Variation of phase lag in degrees vs γ for different values of α
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Figure 4: Shift of corner frequency with change in γ for different values of α
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shown in Fig. 5. This property of reset can be used to design GFrORE where the value of βr is solely used to shape the
phase behaviour while any change seen in magnitude behaviour is insignificant for most practical purposes. A ripple like
behaviour is also noticed in the phase plots for smaller values of βr. This could be due to the approximation technique
used and needs further study.
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Figure 5: Frequency Response of GFrORE of order 2α = 2.5 with γ = 0 for different values of βr

The reduction of phase lag and Q-factor are used in the numerical example presented to highlight the ability of GFrORE
to overcome some of the limitations of linear control.

Numerical Example

Consider a 4th order motion control system similar to a non-collocated double mass single spring system whose transfer
function is given below. Industrial standard PID designed using rules of thumb will be considered for control for easy
comparison of performance of GFrORE.

P (s) =
wp

2

s2
(
s2 +

2swp
Qp

+ wp2
)

where wp is the resonance frequency of 100Hz and Qp is the Q-factor = 30.
The system phase sharply goes to −360 deg at resonance limiting the achievable bandwidth to below wp. Since the
resonance peak is quite large, achieving bandwidths close to wp is also impossible with PID, since the resonance peak
results in additional cross-over frequencies. This is solved in the industry through a low pass filter whose main function is
to introduce sufficient phase lag around wp rather than attenuating the resonance peak. It additionally serves the purpose
of attenuating noise at higher frequencies.
To highlight the advantage of using fractional order and then reset, controllers are designed using first order, second order,
fractional order filters and GFrORE. The system specifications and parameters of the filters are provided below.

• System Specifications

– Achieve highest possible bandwidth

– Min PM = 30 deg

– Min MM = 6dB

• Since the system is Type 2, PD is used instead of PID and is designed using rules of thumb. The transfer function
of PD designed using such rules of thumb for some bandwidth ωc is provided below.

PD(s) = K
1 + 3s

ωc

1 + s
3ωc

where K is adjusted to obtain the exact bandwidth ωc. The parameters of the different filter configurations used and
the bandwidth, PM and MM achieved are provided below.
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– First order filter

∗ Corner frequency ωf = 80Hz

– Second order filter

∗ Corner frequency ωf = 110Hz with Q = 1

– Fractional order filter

∗ 2α = 2.5

∗ Corner frequency ωf = 140Hz with Q = 0.97

– GFrORE

∗ 2α = 2.5, γ = 0

∗ Corner frequency ωf = 170Hz with Q = 4300 (This is the Q factor of the fractional order filter. As
noted before with reset, the Q resonance peak is attenuated significantly.)

The bandwidth ωc achieved in first three cases is 24 Hz. A marginal increase to 25 Hz is achieved with GFrORE. The
attenuation of original Q-factor through reset allows for greater freedom in shaping the phase of filter and is used to
achieve the slight improvement. This can be seen in the large value of Q compared to the other 2 cases. Open loop bode
plots are provided in Fig. 6 for all cases along with step responses in Fig. 7. Higher attenuation is achieved at higher
frequencies for higher order filters in the case of both linear and GFrORE as seen in the open loop plots, which in turn
result in comparatively faster settling.
The main advantage of GFrORE however over it’s non-reset linear fractional counterpart is seen in the sensitivity bode
plot provided in Fig. 8. While increase in the filter order and the use of fractional order ensures more noise attenuation
and faster settling time, the water-bed effect results in higher sensitivity at lower frequencies for larger orders of LPF in
the linear case. However, in the case of GFrORE, although the peak of sensitivity is still limited to 6dB by the system
specifications and the order is 2α = 2.5, the system is least sensitive among the cases considered as seen in Fig. 8.

10
2

-60

-40

-20

0

20

M
ag

n
it

u
d
e 

(d
B

)

With First order filter

With Second order filter

With Fractional order filter, 2  = 2.5
With GFrORE, 2  = 2.5,  = 0

10
2

Freq (Hz)

-500

-400

-300

-200

-100

P
h
as

e 
(d

eg
)

20 25 30 35
-4

-2

0

2

4

M
ag

n
it

u
d
e 

(d
B

)

1 1.02 1.04 1.06 1.08 1.1

Freq (Hz) 10
4

-280

-260

-240

-220

-200

M
ag

n
it

u
d
e 

(d
B

)

Figure 6: Open loop frequency response for all controller configurations provided. On the left is the overall open loop frequency
response. On the right top is zoom in at the bandwidth and on the right bottom is at high frequencies where noise attenuation is
necessary

Conclusions

A novel Generalized Fractional Order Reset Element (GFrORE) filter is presented and analysed in this work. The order
α provides flexibility over the magnitude slope, while reset action results in reduced phase lag with γ providing the
necessary parameter for tuning the same. Reset action however results in the corner frequency being shifted at smaller
values of γ and the rule of thumb presented can be used to appropriately design the filter. Further it is seen that reset
significantly reduces the Q-factor and indirectly provides greater freedom in shaping phase of filter. A numerical example
is provided to highlight the advantage of GFrORE over its linear counterparts.
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