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Summary. The paper deals with a dynamical system governing the motion of two point vortices embedded in the bottom layer of a 
two-layer rotating flow experiencing linear deformation and their influence on fluid particle advection in the upper-layer. If the 
deformation is stationary, the vortices can move periodically in a bounded region. This vortex periodic motion plays the role of a 
perturbation to the fluid particle dynamics. Due to periodic nature of the perturbation, a vast spectrum of resonance phenomena 
appears. Analyzing the conceivable resonances observable in the upper-layer of the flow is the main goal of the study. 

 
We study the following systems of nonlinear ordinary differential equations governing the positions of the vortices and 
a passive scalar. The governing equations for a scalar in the upper-layer ensue [1]: 
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where S  is the shear coefficient,   is the rotation coefficient, 1 2,H H are the layers' depths, 1 2H H H   is the 

total depth, 1K  is the modified Bessel function of the first order and     1/22 2

i i iR x x y y    . 

By substituting the corresponding vortex coordinates in eq. (1) and excluding self-induction, one readily obtains the 
governing equations for the vortex trajectories 
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where     1/22 2

12 1 2 1 2r x x y y    . 

Figure 1a shows a typical phase portrait of the vortex motion. Figure 1b shows how the frequency of the vortex motion 
changes depending on the vortex initial positions. This frequency is the characteristic frequency of the perturbation 
influencing the dynamics of the passive scalars in the both layers. 
 

 
Figure 1: (a) Typical vortex trajectories. (b) Typical frequency of the vortex motion. 

 
When the vortices are stationary, they induce steady-state passive scalar advection. Figure 2 demonstrates the 
separatrices of all the possible steady-state configurations. When we shift vortices from elliptic points, the upper-layer 
dynamics changes drastically. Figure 3 demonstrates a Poincare section for the upper-layer fluid particles for the case 
of rotating vortices. 
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Figure 2: Separatrices of the steady-state passive scalar advection in the upper-layer depending on the shear 

parameter. 1 2 0.3   , 0.02   : (a) 0.015S   , (b) 0.007S   , (c) 0.001S    and the phase 

portrait for week vortices 1 2 0.05   , 0.01S   . 

 
Figure 3: Poincare sections of fluid particle trajectories in the upper-layer governed by the perturbed system (1). The 
perturbation is implemented as a deviation   from the stationary configuration in the starting vortex positions. The 

crosses indicate the stationary positions of the vortices in the bottom layer. The bold curves encircling the crosses are 
the trajectories of the vortices in the bottom layer. The system parameters are 0.01S   , 0.02    and (a) 

1 2 0.03   , 0.4   and vortex rotation frequency is 0.039829  ; (b)  1 2 0.0475   , 0.1  ,  

0.04329  . 
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