Calculus on Smith-Volterra-Cantor sets

Alireza Khalili Golmankhaneh*
* Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran

Summary. In this paper, we study the F^{α}-calculus triadic Cantor set which involves fractional local derivatives. The functions with fractal support are not differentiable and integrable in the sense of standard calculus. Triadic Cantor sets have self-similar properties and fractional dimensions which exceeds theirs the topological dimensions. We have generalized F^{α}-calculus on the triadic Cantor set to the Smith-Volterra-Cantor sets. We have suggested a calculus on the middle- $\epsilon,(0<\epsilon<1)$ Cantor sets for the different value of the ϵ. Differential equations on Smith-Volterra-Cantor sets have been solved. Using the illustrative samples we present the results.

Basic tools in the fractal calculus

In this section, we summarize F^{α}-calculus without proofs [1]. We review the Cantor-Like sets and theirs properties as follows[6] :

Middle- ϵ Cantor Sets:

Let us consider the unit interval $I=[0,1]$ then in the first iteration remove the an open interval of length ϵ of $[0,1]$ from the middle of the I so we have

$$
\begin{equation*}
F_{1}^{\epsilon}=\left[0, \frac{1}{2}(1-\epsilon)\right] \cup\left[\frac{1}{2}(1+\epsilon), 1\right] . \tag{1}
\end{equation*}
$$

In the second iteration, we pick up two disjoint interval with length ϵ from the middle of each of the interval in the F_{1}^{ϵ} then arrive at

$$
\begin{align*}
& F_{2}^{\epsilon}=\left[0, \frac{1}{2}(1-\epsilon)^{2}\right] \cup\left[\frac{1}{4}(1-\epsilon)(1+\epsilon), \frac{1}{2}(1-\epsilon)\right] \cup \\
& {\left[\frac{1}{2}(1+\epsilon), \frac{1}{2}\left((1+\epsilon)+\frac{1}{2}(1-\epsilon)^{2}\right)\right] \cup\left[\frac{1}{4}(1-\epsilon)(1+\epsilon), \frac{1}{2}(1-\epsilon)\right] \cup} \tag{2}\\
& {\left[\frac{1}{2}(1+\epsilon)\left(1+\frac{1}{2}(1-\epsilon)\right), 1\right] .} \tag{3}
\end{align*}
$$

Continuing iteration by picking up an open subinterval of length ϵ from the middle the disjoint intervals we lead ϵ-Cantor set as

$$
\begin{equation*}
F^{\epsilon}=\bigcap_{k=1}^{\infty} F_{k}^{\epsilon} \tag{4}
\end{equation*}
$$

where F^{ϵ} has self-similarity property with the fractional dimension. The ϵ-Cantor sets has zero Lebesgue measure [6]. Namely,

$$
\begin{equation*}
\mathrm{L}_{m}\left(F^{\epsilon}\right)=\lim _{k \rightarrow \infty} \mathrm{~L}_{m}\left(F_{k}^{\epsilon}\right)=\lim _{k \rightarrow \infty}(1-\epsilon)^{k}=0 \tag{5}
\end{equation*}
$$

Hausdorff dimension of Middle- ϵ Cantor Sets:

For every Middle- ϵ Cantor sets the Hausdorff dimension is given by

$$
\begin{equation*}
\operatorname{dim}_{H}\left(F^{\epsilon}\right)=\frac{\log 2}{\log 2-\log (1-\epsilon)} \tag{6}
\end{equation*}
$$

where $H\left(F^{\epsilon}\right)$ is the Hausdorff measure which is used to derive Hausdorff dimension [6].
Remark 1. If we choose $\epsilon=1 / 3, \epsilon=1 / 4, \epsilon=1 / 5$, then we have the Cantor triadic set, 4-adic-type Cantor-like set, and 5 -adic-type Cantor-like set/ middle 0.5 -Cantor sets, respectively.

The mass function and the integral staircase

If F is a fractal set then it is the subset of $I=[a, b], a, b \in \Re$ (Real-line). The flag function for F is indicated by $\theta(F, I)$ and is defined [1],

$$
\theta(F, I)=\left\{\begin{array}{l}
1 \text { if } F \cap I \neq \emptyset \tag{7}\\
0 \text { otherwise }
\end{array}\right.
$$

The integral staircase function $S_{F}^{\alpha}(x)$ of order α for a fractal set F is defined in [1] by

$$
S_{F}^{\alpha}(x)=\left\{\begin{array}{l}
\gamma^{\alpha}\left(F, a_{0}, x\right) \quad \text { if } \quad x \geq a_{0} \tag{8}\\
-\gamma^{\alpha}\left(F, a_{0}, x\right) \quad \text { otherwise }
\end{array}\right.
$$

where a_{0} is an arbitrary real number.
A point x is a point of change of a function f if f is not constant over any open interval (a, d) involving x. The set $\mathbf{S c h} f$ is called the points of change of f [1].
The γ-dimension of $F \cap[a, b]$ is

$$
\begin{align*}
\operatorname{dim}_{\gamma}(F \cap[a, b]) & =\inf \left\{\alpha: \gamma^{\alpha}(F, a, b)=0\right\} \\
& =\sup \left\{\alpha: \gamma^{\alpha}(F, a, b)=\infty\right\} \tag{9}
\end{align*}
$$

The integral staircase function $S_{F}^{\alpha}(x)$ of order α for a fractal set F is defined in [1] by

$$
S_{F}^{\alpha}(x)= \begin{cases}\gamma^{\alpha}\left(F, a_{0}, x\right) & \text { if } \quad x \geq a_{0} \tag{10}\\ -\gamma^{\alpha}\left(F, a_{0}, x\right) & \text { otherwise }\end{cases}
$$

where a_{0} is an arbitrary real number.
A point x is a point of change of a function f if f is not constant over any open interval (a, d) involving x. The set $\mathbf{S c h} f$ is called the points of change of f [1].
The γ-dimension of $F \cap[a, b]$ is

$$
\begin{align*}
\operatorname{dim}_{\gamma}(F \cap[a, b]) & =\inf \left\{\alpha: \gamma^{\alpha}(F, a, b)=0\right\} \\
& =\sup \left\{\alpha: \gamma^{\alpha}(F, a, b)=\infty\right\} \tag{11}
\end{align*}
$$

If $\operatorname{Sch}\left(S_{F}^{\alpha}\right)$ is a closed set and every point in it is limit point, so that $\mathbf{S c h}\left(S_{F}^{\alpha}\right)$ is called α-perfect. For the F-limit and the F- continuity definitions we refer the reader to [1].

F^{α}-Differentiation

If F is an α-perfect set then the F^{α}-derivative of f at x is [1]

$$
D_{F}^{\alpha} f(x)=\left\{\begin{array}{l}
\mathrm{F}-\lim _{y \rightarrow x} \frac{f(y)-f(x)}{S_{F}^{\alpha}(y)-S_{F}^{\alpha}(x)}, \quad \text { if, } \quad x \in F, \tag{12}\\
0, \quad \text { otherwise. }
\end{array}\right.
$$

if the limit exists.
In the next section, we will generalize the F^{α}-calculus on the Middle- ϵ Cantor Sets.

References

[1] A. Parvate, A. D. Gangal., Calculus on fractal subsets of real-line I: Formulation, Fractals, 17(01), 53-148, 2009.
[2] S. Satin, A. Parvate, A. D. Gangal, Fokker-Planck equation on fractal curves, Chaos, Soliton Fract., 52 (2013), 30-35.
[3] A.K. Golmankhaneh, D. Baleanu, Fractal calculus involving Gauge function, Commun. Nonlinear Sci., 37 (2016), 125-130.
[4] A.K. Golmankhaneh, D. Baleanu, New derivatives on the fractal subset of Real-line, Entropy, 18(2)(2016), 1-13.
[5] A.K. Golmankhaneh, D. Baleanu, Diffraction from fractal grating Cantor sets, Journal of Modern Optics, 63(14) (2016), 1364-1369.
[6] D. Robert, W. Urbina, On Cantor-like sets and Cantor-Lebesgue singular functions, arXiv preprint arXiv:1403.6554 (2014).

