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Summary. This study focuses on dynamics of a class of elisanechanical systems subject to equality matimstraints. Following
a proper application of Newton'’s law of motion amnfiguration manifolds possessing general geomptoperties (i.e., metric and
connection), a new set of equations of motionrst fibtained as a system of second order ordinéfsrehtial equations (ODES).
Then, a suitable weak formulation is developed apylied, providing a reliable foundation for perfing an efficient numerical
integration based on an augmented Lagrangian schemedly, a set of numerical results is preserftadselected mechanical
examples, illustrating the advantages of the nepvageh.

Introduction - Motivation

Research on the dynamics of mechanical systemgauigi motion constraints is a traditional and fawde topic
among researchers with different backgrounds (Elgd]). This is in part due to the fact that thiea of Analytical
Mechanics is still challenging and several theoedtaspects related to it remain unexplored andaarenable to
improvement, despite the long tradition on the sctbjAnother driving factor is that a better untmging of the
fundamentals in this area provides a stronger fatiod and offers substantial help in the effortsadve difficult
engineering problems by deriving and employing neware advanced, accurate and robust numericalitpeds [5,6].
This in turn leads to useful design gains in margas, including mechanisms, robotics, machinerymbichanics,
automotive and aerospace structures.

Typically, the equations of motion for tis classsystems are derived and cast in the form of afsdifferential-
algebraic equations (DAESs) of high index. Howe\math the theoretical and the numerical treatmerDAEs is a
delicate and difficult task [7]. For this reasoramy attempts have been performed in the past &ffart to cure the
problems related to a DAE modeling. Over the yeiail®as become apparent that many of the theotejigsstions in
the area of Analytical Dynamics, related to engiimgeproblems, can be answered in an illustrative @mplete way
by employing fundamental concepts of differentiabmetry [8,9]. Based on this observation, the nadijective of
this work is to use such concepts in order to mleva better theoretical foundation and to develomppropriate
numerical scheme for treating a class of constcaimechanical systems.

The new approach assigns appropriate inertia, dagnand stiffness properties to the constraintsaAgsult, the
equations of motion are second order ODEs in Hwhgeneralized coordinates and the Lagrange malsplarising
from the constraint action [10,11]. This, in tulegds to elimination of the singularities assodatéth DAE or penalty
formulations. As a consequence, there is no neeadttoduce artificial parameters for scaling anabdization. In
addition, the geometrical properties of the origimanifold are kept unchanged by the additionalst@ints. This
preserves the properties of the special curvesiefinanifold employed in the numerical discretizatamd leads to
major advantages compared to previous work ini#ié 6f computational Multibody Dynamics [5,6]. T8eeequations
are first put in a convenient weak form. Moreovhe, position, velocity and momentum type quantiéiessassumed to
be independent, forming a three field set of equati{12,13]. In particular, the weak velocities dahd strong time
derivatives of all the coordinates involved in foemulation are related through a new set of Lageamultipliers,
which are shown to represent momentum type vasablext, the weak formulation developed is emplogea@ basis
for producing suitable time integration schemestfier class of systems examined. One such schemedavatped
for the purposes of this study. The validity anficefncy of this scheme was tested and illustrdtg@pplying it to a
number of characteristic example mechanical syst&m®ng other things, the results obtained vetifgtthe scheme
developed passes successfully all the tests refatadspecial set of challenging benchmark problerhesen by the
multibody dynamics community [14]. In addition, tb@me scheme was also applied successfully to aemof large
scale industrial applications as well.

The organization of this paper is as follows. Fitisé strong form of the equations of motion goimgrthe dynamics
of an unconstrained discrete mechanical systemresepted briefly in the following section. Therg torresponding
weak form of these equations is derived in thedtsiction. Next, the weak form of the equationsnofion for the
class of constrained multibody systems examinetis/ed and presented in the fourth section. Basetthis form, a
temporal discretization scheme was developed anterioal results were obtained for several mechéeixamples.
Some characteristic numerical results are presenttw fifth section.

Application of Newton’s law of motion on a manifold

This work examines a class of mechanical systenssa/Iposition is determined by a finite number dfiegalized
coordinatesq = (d', ...,q"), at any time instance [1,9]. The motion of such a system can be reptesiry the motion
of a fictitious point, sayp, along a curvey = y(t) in an n-dimensional manifoldM , the configuration space of the
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system. Moreover, the tangent vector dy/dt to this curve belongs to am-dimensional vector space, the tangent
space of the manifold ap, denoted byl M [4]. By construction, for any poinp of M, a coordinate mag can
be defined by

a=¢(p) 1)

acting from a neighborhood qf on M to the Euclidean spad®" . Then, by adopting the usual summation convention
on repeated indices, each tangent vector at ppinan be expressed in the form

V() =v(e, 2
where B, ={e, ... e} is a coordinate basis for spadgM . Likewise, one can define the dual spaceliv ,

denoted byTpDM , with elements known as covectors. In dynamiospraespondence between a coveatorand a
vector u is established through the dual product

u'(w) =(u,w), OWOT,M, ®3)
where (LIy denotes the inner product of vector spdghl [8]. In this way, to each bas{g} (with i =1,..,n) of

T,M , a dual basi§€} can be established fd’rpDM by employing the conditior (g)= 5} . Then, determination of

the true path of motion (or the natural trajectarg)a manifold is based on application of Newt@®sond law in the
form

O,Pu = fus 4)
where v is the tangent vector of the natural trajectorft), while fM = f € represents the applied force [1,9].
Moreover, the generalized momentum is defined @gdvector corresponding to the velocity vecter, ip,, =V .
Then, if v=Vv'g and p, = p€, application of Eq. (3) leads to -

=g,V (5)
where the quantitieg); =(g,g;) represent the components of the metric tensooit pp. These quantities are

selected to coincide with the elements of the maasix of the system, defined through the kinetiergy. Finally, the
covariant differential of the covector fielg* (t) on M along a vectow of T,M is evaluated by

0,0 ) =(p ALV e (6)

where O is the affine connection of the manifold. The cmnrrmts/\ikj of the connectiori] in the basis off M are
known as affinities [2,9].

Weak form of Newton'’s law on a manifold with no moton constraints

Through the definition of a class of special covex{called Newton covectors, see [11]) by

hy =0,8 ~fu )
the equations of motion (4) at any point on a gunttion manifoldM can be put in the form
h, =0. 8)

Therefore, when there exist no motion constraihtshould be true that
N,wW=0 = [*f,Wd=0, OwOT,M ©)

along a natural trajectory on the manifold and imimy time interval[t,, t,] . Manipulation of the last integral requires

application of integration by parts of the covatidarivative appearing in Eq. (7). This is achiebydemploying the
identity

0, (P (W) = (0, By )W) + By (O, W) , (10)
which can be interpreted as a Leibniz rule on diffiéiation. Then, the following expression is obéal
tp * B *
J T0,Cpy (W) = Py (D)~ , (w]dt =0 . (11)

Finally, after an integration by parts of the firstm inside the integral, the last equation becme
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[P (W1, = [ TR0, + fi (Wl =0 (12)

This equation represents the so called weak fortheoéquations of motion [15]. In essence, it dtutsis an alternative
way to determine the true history of the coordisdte., position) and velocities of a mechanigatem satisfying the
law of motion, as expressed by Eq. (4) originally.

Further manipulation of the weak form of the equadi of motion (12) involves differentiations alotig vectorsv

and w. This requires the construction of two smooth eedields on M . The first of these can be constructed by
considering the tangent vecterat each point of the natural trajectarft) . The second vector field can then be created
by introducing another vectow of the tangent space at each point of the sanectoay, which can be arbitrary.
Therefore, a variation of any scalar functidnis defined as the derivative df along vectorw , by

5fE\Lv(f)=fviw‘. (13)
Likewise, the differential off is defined by

df =v(f)="f,v. (14)

Weak form of Newton'’s law on a manifold with bilateal constraints

Next, consider systems subject to an additionabf&t scleronomic constraints, which can be put in trenf
#@.v)= Ay =0, (15)

wherey is a vector inT,M and A= [af] is a knownkxn matrix. In the special case where constraint Isramic,
these equations can be integrated and writtereimldpebraic form

#'(q) =0. (16)
Based on the above, the equations of motion ofldees of systems examined can be cast in the form
h =h 17)
on the original manifoldv [11], with
by =he =[(g,V)) ~ARg, V'V = fl¢ and I =Y " [(MpA®) +Ted® +ked” - filafe . (18)
In the last relation, the convention on repeatelites does not apply to indeX . Moreover, the coefficients
M i i = i fi j L i j 3 i
Mer :CRgiJ'CFJ? » Crr = _CRW(QI\_/J)CJ J kRR =G fi,j(q7y’t)cj J fR =Cg fi (a.v.t) (19)

represent an equivalent mass, damping, stiffned$acing quantity, respectively, obtained throagprojection along
a special directiorg, on T)M [11]. Specifically, the components of tievector ¢, are selected to satisfy

atc, =1. (20)
If generalized (true) coordinates are used, whieams that' = , Eq. (17) represents a setmfsecond order coupled

ODEs in then+k unknownsg' and AR. The additional information needed for a compratehematical formulation

is obtained by incorporating the equations of the constraints. In particular, facte holonomic and non-holonomic
constraint, a second order ODE is obtained, witmfo

(M) + T + ke =0 aNd (M) +T" =0, (21)
respectively. Taking into account the new set afagipns of motion (17), Eq. (9) is first modifiedcardingly to
J (0, ~)Wdt =0, OwWOT,M . (22)

Next, consider a holonomic constraint, as exprebyeglq. (16). It is easy to verify that the followgiis satisfied
b e - —
[ UMy +d” + 1" =0,

for an arbitrary multiplierdA® . A similar expression is obtained for each norehomic constraint as well.
In a weak formulation, it is advantageous to comsitie position, velocity and momentum variablesndependent
[16-18]. For this, a new velocity field is introduced on manifoldM , which should eventually be forced to become

identical to the true velocity field through thentponentsrz of a covector, representing a set of Lagrangeiptieits.
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A similar action can be taken for the velocity cangntsA®, by introducing another set of Lagrange multigjers,.

Likewise, one can relate the strong time derivativeand A® of the position type variables to weak velocitigsand
47, through two new sets of Lagrange multipliers,ated by drz and oo, respectively. To achieve these tasks, the
weak form expressed by Eq. (22) should be augmdntelde terms

[1m(v -ov)+am(v -V)ldt and [[on(du" - OA%) + o (4" - AF)ct (23)

Finally, by adding up all these terms and perfognappropriate mathematical operations yields ewlytithe
following three field set of equations

|t .
(=Y h M =W 43 (M =0 )"
t _ i _ - t _ , / i
1P+ X e M + M)A+ YL (0 = M)t = [ (=, + X @l + (1~ +0) U
+Z l;{:l[(ERR,uR + ERR/] R - FR)aiR - rT‘RR/JR DTaf]"' fi _%} wdt + Zl;:lﬂz( Og + ERRJ + RRR(‘F) ARt =0, (24)

where the variationsv , A%, &', q~, o and do, are independent for ail=1,...,n and R=1,... k, while

ot i\ ko[l R _ jR
) +L o (v —v)dt+ZR:1J.tl oo (u° = A%)dt

DD—f =af| v =af-Nafv’ and Z=7| v =7 -N mv' . (25)
Equation (24) is the final weak form obtained floe tlass of constrained mechanical systems examniliési form is
convenient for performing an appropriate numeritigcretization, leading to improvements in existmgmerical
schemes based on advanced analytical tools. Fgyuimoses of the present work, this form was fitgt within the
framework of an augmented Lagrangian formulatidsI8]. This leads to a full exploration of the nragmlvantages
of the theoretical method applied, in a quite redtoranner. More specifically, this method is appiate for performing
a geometrically exact discretization. This is egdgcuseful when the configuration space of thetegn possesses
group properties [19,20]. The success of this fdatmn was demonstrated by the accurate solutidaiéd for a
number of challenging problems. Some charactenistults are presented next for several typicatgtes. The first
ones have a relatively simple geometry and aread@mic interest, while the last example was tét@n an industrial
application.

Numerical Results

Example 1: Plane Pendulum
The first set of results refers to a planar penaicomposed of a steel sphere with radRrs 10cm, massm = 32Kg

and mass moment of inertig = diag(0.13 0.13 O.l}BKg m?, together with a massless rod with lendtk1m.

The rod is connected to the ground through a réeghint so that the system motion is limited ie thy plane. This
system is released from rest, from an initial posjtshown in Fig. 1la. Consequently, it underg@egd amplitude
oscillations, due to the action of gravity along tiegative Y direction.

In Figs 1b-1i are presented and compared numeassealts obtained by the new solver (labeled by LM results
obtained from a state of the art code, employiBd& solver [21]. In both cases, an effort was madesep the same
time step and accuracy level in the numerical datmns. In particular, an accuracy level of 0.04swequired in all
runs, using either code.

First, in Fig. 1b is shown the mechanical energthefsystem as a function of time, assuming a getential energy
at the position shown in Fig. 1a. Clearly, the cameial code exhibits a gradual and substantial iegichl energy
loss. This is probably related to the high leveladfificial damping induced in the BDF scheme ergpth The
consequences of this are demonstrated in Figs 1thigarticular, in Figs 1d and le is presentedtitine history of
the vertical component of the displacement at #girining and at a later time interval of the oatidin. The results
indicate a drift and a reduction in the amplitudeoscillation obtained by the BDF method. Similanclusions are
drawn from the results presented in Figs 1f andoigsenting the history of the angular velocityhef pendulum. It is
important to note that a similar behavior with [2¢4s also observed by employing another stateeofth code in
multibody dynamics, which uses also a BDF scher@g [2

The good performance of the new code is due tdatiethat the new set of equations of motion emgdbincludes
suitable terms, avoiding a growth in the constraintation error in an automatic manner. For ins&rnin Fig. 1c is
shown the numerical error in the vertical positairthe end point of the pendulum. Likewise, in Figsand 1i are
shown results obtained by the new code, by takig account the critical ternm,,, evaluated by Eq. (19), or
neglecting it (i.e., setting it equal to zero) e tcalculations. As it is obvious from Egs (18) é2t)), this term assures

the presence of the constraint inertia teffhin the equations of motion. Obviously, eliminatioithis term leads to
a sudden and dramatic reduction of the time stysiog a sudden termination of the numerical catms.
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Fig. 1. Numerical results for a planar pendulum: (a) med# model, (b) mechanical energy error, (c) \tiola of
position constraint, (d)/(e) history of the sph¥réisplacement, (f)/(g) history of the pendulum alag velocity, (h)
displacement in the vertical direction Y with andheut m, and (i) solver step size with and withoiy. .

Example 2: Double Four Bar Mechanism

Next, in Fig. 2 are compared results obtained tphépg the new method with similar results obtaideda typical
benchmark problem [14]. In brief, the double foar mechanism examined is a representative of dbodif system
passing from a singular configuration. All the rdusse equal length and uniformly distributed m&secifically,
when the bars reach the horizontal position, thaber of degrees of freedom increases instantanefrash one to
three. In the set of calculations presented nbgtptechanism starts from rest from the positiomwshion Fig. 2a and
executes oscillations due to the action of graaibng the —y direction. Again, the results of teevnmethod are labeled
by LMD.
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First, the results of Fig. 2b verify the closenetshe results obtained by the two methods, withim time interval
considered. However, the results presented inZeiglemonstrate a difference in the error in thehaeical energy
(taking as a reference configuration the one shiowg. 2a). The new method predicts a constantesalose to zero,
which is the exact value. In addition, the resstiswn in Figs 2d, 2e and 2f show three differepesyof failure in the
response obtained by using the same BDF solvan #wiprevious example [21]. More specifically, gimulation
stops suddenly (Fig. 2d), the solver finds a wrealgition (Fig. 2e) or it predicts a breaking of twnections leading
to a disassembling of its members (Fig. 2f), aatleehanism passes from the singular position.
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Fig. 2. Numerical results for a double four bar mechani@pmechanical model, (b) history of position ametbcity
of point B, of the mechanism, (c) mechanical energy error, M3 esults (using a BDF method) where (d) simufatio
stops, (e) solver finds a wrong solution and (§ thechanism breaks.

Example 3: Rectangular Bricard Mechanism

The next set of results refers to a six-bar reatlargBricard mechanism, shown in Fig. 3a. All thels are connected
with revolute joints, have equal length and uniflyralistributed mass. Again, this system moves dugravity acting
along the negativey -axis. The mechanism examined represents a meehaggtem which is redundantly constrained
throughout its motion and, due to this propertglso belongs to a special set of benchmark prabladi.

First, in Fig. 3b are shown the time historiestef X, Y and z coordinates of point,, while in Fig. 3c is depicted

the mechanical energy of the system. Finally, igsF8d and 3e are presented the corresponding ibstof the
constraint violations in the position and velodiyels during the same time interval, representethb norm of the
array of the constraints at each level.

Direct comparison of the results in Fig. 3 illusésathat the present method is accurate and passesssfully the
benchmark tests. It also presents an improved ricatgrerformance. For instance, the mechanicalggneomputed
by the present method remains virtually constaitt. (8¢). In addition, the errors in both the diggment and velocity
constraint violations are bounded and stay atahneesevel, throughout the time interval examinedgRBd and 3e).
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Fig. 3. (a) Mechanical model of a Bricard mechanism,hisjory of thex, y and z coordinates of point,, (c)
mechanical energy, (d) violation of position ang\elation of velocity constraints.

Example 4: Flyball Governor

The next example is a flyball governor, shown ig.Hia. Here, the coupler rods have been replacegiiyyg-damper
elements with stiffness and damping coefficientsaédqo k = 8-105 N/m andt = 4-104 Ns/m, respectively. This
produces a stiff system and is included in a spseiof benchmark problems [14]. At time t = Ottbarms form an
anglep = 30° with respect to the-axis and the shaft rotates about its axis wittaagular velocityo = 2t rad/s.
Subsequently, the system moves under a gravitatioree along the negative z axis.

First, in Figs 2b and 2c are compared resultsehgw method with a benchmark solution for thednjsof the angular
velocity and the distance s, respectively. Theltesudicate a good level of agreement. FinallyiFigs 2d and 2e are
shown results for the numerical violation obserirethe position and velocity constraint, respedtiv€learly, the
level of both of these errors is quite low andastcolled by the new methodology developed in aomatic way.
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Fig. 4. Numerical results for a flyball governor: (a) maakcal model, (b) history of the angular velocifysbaft, (c)
distance S, (d)/(e) violation of constraints iniios and velocity field, respectively

Example 5: Rolling Sphere on a Turntable

The system examined next consists of a spheragadiver a turntable, as shown in Fig. 5a. The spéeature of this
problem is that it belongs to the class of systsunigect to rheonomic constraints. This problemakmg history. For
instance, even analytical solutions are availatténbrizontal and tilted turntables, under purdimglconditions [23].
Here, a steel ball with a radius 8f=2,5m is considered, moving on a horizontal rotatinddiEhe ball starts at the

center of the turntable with a small initial velyci, = (0.5 -05 QT m /s and rolls without sliding, while the disk

rotates with a constant angular velocf®y =27rrad /s along the vertical axis Z. In Fig. 5b is preserttegltrajectory

obtained for the ball by applying the existing atiabl results and the new method developed. Azebgu by the
choice of parameters, the path is circular, whikgpeed remains constant throughout the whokctay.
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Analytical —— Numerical .
-0.2 0 0.2 0.4 0.6
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Fig. 5. Numerical results for the rolling ball méid@) mechanical model and (b) orbit of the ball.

Example 6: Complex Model of a Ground Vehicle

In the last example, a quite complex model of aigdovehicle is examined, shown in Fig. 6a. This ehdiglcomposed
of a basic powertrain system, a complex steeristesy, together with involved front and rear susjfmnsystems with
jounce and rebound bumpers. Also, the tires wergeted using the well-known Pacejka tire model [24]total, the
model consists of 53 rigid bodies, interconnect&l 49 kinematical constraints, 29 bushings, rgpdamper systems
and 9 action-reaction force elements. As a conseyehe total number of degrees of freedom ofitied model is
134. In the examples examined, the vehicle is stidjeto two classical road handling tests. For, thisappropriate
driving torque and steering angle is applied atcues differential and wheel during the motion,sa®wn in Figs 6b
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and 6c. In the first test, the vehicle is runningroa straight path with a constant longitudindbety V, =-60Km/h

before it starts performing a typical double lahamge (DLC). In Figs 6d and 6f are presented ssdeetsults obtained
for tire forces and velocity components by applythg new numerical method (labeled by LMD). Morepvthese
results are compared with results obtained forstimae model by two state of the art numerical c2&22]. These
codes set up the equations of motion and solve tmemerically as a system of DAEs. In the second teswept
steering maneuver is performed. Typical resultstiferforces and velocity components are shownardpared in
Figs. 6e and 6g. The difference between the resbltgined by the new method and one of the cod&sig2most
probably due to differences in the tire models exygdl.
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Fig. 6. Numerical results for a car model: (a) ehimodel, (b)/(c) driving torque and steering anigiput curves,
(d)/(f) front right tire lateral force and vehidieteral velocity for the DLC analysis, (e)/(g) ftaight tire lateral force
and vehicle lateral velocity for the swept testlpsia.
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