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Numerical analysis of a non-linear energy sink (NES) for the parametric excitation of a
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Summary. This paper addresses passive suppression of oscillations caused by parametric excitation of a rigid and submerged cylinder
mounted on an elastic support. A rigid bar, hinged at the axis of the cylinder and with a tip mass is used as a passive absorber, herein
named non-linear energy sink (NES). A two degrees-of-freedom analytical model is derived and numerically integrated. The influence
of three dimensionless parameters of the mathematical model on the suppression is discussed. The results show that this passive
absorber can lead to a marked decrease in the cylinder’s oscillation.

Introduction

Passive suppression is a very common subject in dynamics of structures. There are numerous works in this theme for
several technological applications. A particular kind of passive absorber consists on a rigid bar, with one extremity pinned
at the structure and with a tip-mass. In this paper, such a passive absorber is named as non-linear energy sink (NES),
following the nomenclature adopted in [1].
This kind of absorber leads to very interesting dynamic behavior, as documented in several articles. Among interesting
aspects, it can be highlighted the presence of non-synchronous oscillations - [2], [3].
Returning to reference [1], the authors investigated the behavior of this kind of suppressor in the mitigation of vortex-
induced vibration phenomenon (VIV). Among other findings, it can be highlighted the presence of chaotic response. It is
worth to emphasize that similar passive vibration absorbers for VIV, but based on translational displacements of internal
masses, are described in references [4] and [5].
The present paper focuses on the use of a NES as a passive absorber for the oscillations caused by parametric excitation
of a circular and submerged cylinder. In the next Section, the mathematical model is derived. Following, some numerical
results are presented and the main conclusions are addressed.

Mathematical model

Consider the problem sketched in Fig. 1. The rigid cylinder has diameter D and total mass per unit length M (including
both the structural mass ms and the potential added mass ma) and is assembled to an elastic support with time-dependent
stiffness k(t) = k̄ + ∆k sin Ωt and damping constant c.
Internally to the rigid cylinder, there is a rotating passive absorber, hinged at the axis of the cylinder and composed by a
rigid and imponderable bar, with a lumped mass m at its tip. Associated to this passive absorber, there are a rotational
spring with stiffness kθ and a dashpot with damping constant cθ. The system is immersed on a fluid with density ρ and
the gravitational acceleration is parallel to the cylinder axis.

Figure 1: Sketch of the problem.

By applying, for example, Euler-Lagrange’s equations, we can easily find the equations of motion of this system:
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A series of quantities can be defined as follows:
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being ˙( ) the derivative with respect to the nondimensional time τ . Using the above definitions, the dimensionless equa-
tions of motion are given by Eqs. 4 and 5.
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Notice that, for the problem of pure parametric excitation, the dimensionless equation of motion is:

ÿ + 2ζy ẏ + (1 + δ sin(nτ))y +
2
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The non-linear hydrodynamic damping is proportional to |ẏ|ẏ and follows the classical Morison’s model. In the context of
parametric excitation of risers and TLP tethers, it is responsible for the presence of bounded solutions even in the unstable
region of the Strutt diagram ([6]).
Eqs. 4, 5 and 6 were numerically integrated using a Runge-Kutta scheme (ode45 MATLAB R© function). The simulations
were carried out using time-step ∆τ = 0.01, τmax = 800 and only two non-zero initial condition, namely y(0) = 0.1
and θ(0) = π/3.

Results

This paper discusses the effects of three parameters β, r̂ and m̂ on the suppression of oscillations caused by parametric
excitation. The results are discussed from the time-histories of translational and angular displacements (y(τ) and θ(τ)
respectively) and the corresponding amplitude spectra.
For the sake of organization, three simulation groups were carried out aiming at identifying the effectiveness of the
mentioned parameters in suppressing the cylinder’s oscillation. Tab. 1 presents the parameters of each simulation group.
The others parameters were kept constant as ζy = 0.05, ζθ = 0.01, δ = 0.5, n = 2, Ca = 1, CD = 1.2, m∗ = 2.6.

Table 1: Parameters of the different simulation groups.

Group 1 Group 2 Group 3
β r̂ m̂ β r̂ m̂ β r̂ m̂

1 : 4 0.30 0.50 1 : 1 0.10 0.50 1 : 1 0.30 0.05
1 : 2 0.30 0.50 1 : 1 0.20 0.50 1 : 1 0.30 0.10
1 : 1 0.30 0.50 1 : 1 0.30 0.50 1 : 1 0.30 0.30
2 : 1 0.30 0.50 1 : 1 0.40 0.50 1 : 1 0.30 0.50

Influence of β - Group 1
Time-histories of dimensionless linear and angular displacements (y and θ) and the corresponding amplitude spectra
are shown in Fig. 2. Considering firstly the pure parametric excitation case, a steady-state amplitude close to 0.8 with
dimensionless oscillation frequency ω̂ = ω/ωy = 1 is reach. Notice that, even with n = 2 (principal parametric instability
condition), the solution is bounded due to the non-linear hydrodynamic damping.
Now, focus is put on the cases with combined parametric excitation and the internal absorber. Fig. 2(c) reveals a marked
decrease in the steady-state oscillation amplitude of response for the cases with β = 1 : 4 and β = 1 : 2. On the other
hand, the cases with β = 1 : 1 and β = 2 : 1 indicate negligible influence on the dynamics of the cylinder and narrow
amplitude spectra.
Considering now the case with β = 1 : 4, irregular behaviors can be observed in both y(τ) and θ(τ). Furthermore, such
an irregular behavior is more pronounced for τ < 400, where it can be noticed cylinder’s oscillations with maximum
ymax ≈ 0.5. After τ = 400, this value of β shows to be very effective in the suppression of the cylinder’s oscillations,
leading to a regime in which practically there is no oscillation of the cylinder, followed by intermittent bursts in which the
cylinder reaches a maximum displacement close to 10% of its diameter.
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Figure 2: Time-histories and amplitude spectra - Group 1. “Pure” indicates pure parametric excitation.

As already mentioned, the absorber with β = 1 : 2 is also very effective. This condition leads to a steady-state response
with typical amplitude close to 0.1 diameter. Despite this oscillation being larger than that obtained with β = 1 : 4, there
is no burst in the response.
Now, we discuss the angular displacements θ(τ) of the internal absorber. As can be seen in Fig. 2(b) and similarly to
what is observed for the cylinder’s oscillation, irregular response θ(τ) is found in the case with β = 1 : 4 for τ < 400.
Curiously, the case with β = 1 : 1 indicates large oscillations around a non-null value. Notice that, despite the large
oscillations of the NES, this condition practically does not lead to a significant decrease in the oscillations of the principal
structure.
The amplitude spectra of the angular displacements reveal dominant frequency ω̂ = 1 and ω̂ = 2 for β = 1 : 1 and
β = 2 : 1 respectively. The case with β = 1 : 1 also presents significant energy in ω̂ = 2. On the other hand, the
condition with β = 2 : 1 does not show relevant energy in components other than the dominant one.

Influence of r̂ - Group 2
Now, focus is put on the investigation of the influence of the length of the NES. For this, Fig. 3 presents the results
corresponding to the simulations pertaining to Group 2. One clearly notice from Fig. 3(a) that the cylinder’s oscillation is
practically not affect by the presence of the internal absorber, despite non-negligible angular oscillations of the NES.
The amplitude spectra presented in Fig. 3(c) corresponding to y(τ) indicate that all the conditions discussed in the
Subsection are narrowbanded and centered at ω̂ = 1. It can be also noticed the presence of response at component ω̂ = 3
in the case with r̂ = 0.50.
Now, focus is put on the analysis of θ(τ) and the corresponding amplitude spectra. As can be seen in Figs. 3(b) and 3(d),
significant angular oscillations are observed for all values of r̂. Excepted for the case with r̂ = 0.10, the time-histories
θ(τ) present regular behaviors with significant energy at frequencies components ω̂ = 1 and ω̂ = 2.

Influence of m̂ - Group 3
Another aspect investigated in this paper is the influence of the mass of the absorber (or, in dimensionless variables, the
influence of m̂) on the dynamics of the cylinder. The results corresponding to the simulation Group 3 are presented in
Fig. 4(d).
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Figure 3: Time-histories and amplitude spectra - Group 2. “Pure” indicates pure parametric excitation.

Similarly to what is found for the simulation Group 2, the values of m̂ herein investigated in this Subsection do not lead
to a significant decrease in the cylinder’s oscillation for the chosen value of β.
Both the quantitative and qualitative aspects of the time-histories y(τ) are similar to discussed in the previous Subsection,
which focused on the influence of r̂ for β = 1 : 1. All the values of m̂ simulated lead to a narrowbanded amplitude
spectra centered at ω̂ = 1.
The analysis of the time-histories θ(τ) reveals a distinct aspect not observed in the analyzes carried out in the others
Subsections. In the simulations pertaining to Group 3, steady-state response is obtained for all values of m̂.
Also interesting is the behavior of the time-averaged quantity θ̄. Despite the same initial conditions y(0) = 0.1 and
θ(0) = π/3, the cases with m̂ = 0.50 and m̂ = 0.40 oscillate around θ̄ = 1.14 and θ̄ = −1.12 respectively.
Finally, the amplitude spectra evaluated from θ(τ) are analyzed. All values of m̂ discussed in this Subsection reveal a
well-defined peak at ω̂ = 1. The cases with m̂ = 0.05 and 0.10 present similar level of energy at ω̂ = 0.5 and 1.5. At
frequency component ω̂ = 2, energy is found for the cases with m̂ = 0.50, 0.30 and 0.10.

Poincaré’s section
In this Subsection, we discuss the Poincaré’s section and projections on the y(τ) × ẏ(τ) plane of three simulations,
namely the pure parametric excitation case and the conditions with β = 1 : 4 and β = 1 : 2 pertaining to Group 1.
The corresponding time-histories y(τ) can be found in Figs. 2(a) and 2(c). Herein, Poincaré’s sections are obtained for
τ > τmax/2 and using stroboscopic period Tsb = 2π.
The Poincaré’s sections and the projections on the y(τ)× ẏ(τ) plane are presented in Fig. 5. Considering firstly the pure
parametric excitation case, Fig. 5(a) indicates a closed trajectory on the y(τ)× ẏ(τ) plane and the Poincaré’s sections are
collapsed onto a single point. Due to the well known periodic character of parametric excitation response, this aspect is not
surprising. One the other hand, Figs. 5(b) and 5(c) reveal very complex trajectories in the considered plane. Furthermore,
there is a considerable spreading of the Poincaré’s sections, indicating non-periodic responses.
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Figure 4: Time-histories and amplitude spectra - Group 3. “Pure” indicates pure parametric excitation.

Conclusions

This paper presented some numerical results from an ongoing research project that focuses on the suppression of oscilla-
tions caused by parametric excitation. The passive suppressor herein investigated consisted on a rigid bar, hinged at the
cylinder axis and with a tip mass. The dimensionless form of the mathematical model was numerically investigated.
The influence of three parameters of the mathematical model on the suppression of oscillations is investigated. The
parametric excitation frequency was chosen to be that corresponding to the principal Mathieu’s instability, i.e, twice the
natural frequency of the cylinder.
One parameter herein investigated, β, is the ratio between the natural frequencies of the isolated cylinder and absorber. It
was found that values of β = 1 : 4 and 1 : 2 caused a marked decrease in the cylinder’s oscillation amplitude for a certain
set of parameters of the mathematical model. On the other hand, fixing β = 1 : 1, the variation of the length and the mass
of the absorber did not present substantial changes in the cylinder’s oscillation amplitude. Irregular responses of both the
cylinder and the absorber were also found in some conditions.
Further works include a deeper investigation regarding the influence of the parameters of the mathematical model on the
suppression of the cylinder’s oscillations. Other simulation Groups will be carried out, as well as time-frequency spectral
analysis of the time-histories that presented irregular behavior. Asymptotic analysis are also planned aiming at a better
understanding of the problem.
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