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Bifurcation Analysis of Non-Smooth Floating Bodies
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Summary. This paper examines the stability of a non-smooth floating body, specifically a rectangular prism. A nonlinear model is
developed to determine the stability of the upright and tilted equilibria positions as a function of the vertical location of the rigid body’s
center of mass. These equilibria positions are defined by an angle of rotation and a vertical position where rotational motion is restricted
to a two dimensional plane. Numerical investigations are conducted using path following continuation methods to determine equilibria
solutions and evaluate stability. Bifurcation diagrams are generated that illustrate the stability of the equilibrium positions as a function
of the vertical location of the center of mass. The bifurcation diagrams show complex stability behavior with many coexisting solutions.
Experiments are conducted to validate numerical results and an R-Squared value of 0.9987 is observed.
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Figure 1: Geometry of a floating rectangular body in both tilted and upright positions with depth ` into the page. Planar motion degrees
of freedom are assumed where rotation φ and vertical translation z give non-trivial equilibrium solutions.

A classic engineering rule of thumb states that a floating object can be made stable if its center of mass is located below the
center of mass of the displaced fluid. This fact has been leveraged by engineers for centuries in designing flotation devices
that maintain stability under external fluid forces, but loses intuitive usefulness when the object’s center of mass is allowed
to shift away from its geometric center. As this location is altered, complex geometry dependent behavior develops that
result in asymmetric equilibrium orientations that are sensitive to jumps in stability under small perturbations.
This abstract examines the dynamical system characteristics for a non-smooth floating body, specifically a rectangular
prism. A nonlinear mathematical model is developed to describe the system which is then used to determine the stability of
both upright and tilted equilibria positions as a function of the vertical location of the object’s center of mass. Simulations
are conducted using time marching algorithms to obtain numerical results that are then validated through experimental
studies. This work will enable future studies on the dynamic behavior of discontinuous floating bodies with various
real-world applications.
Fig. 1 shows a schematic of the upright and tilted positions of a floating rectangular body along with its defining pa-
rameters a, b, ` and m. Additionally, k is defined as the vertical distance from its base to the center of mass and is the
parameter that will be varied throughout this study. Assuming planar motion, this body’s position can be fully described
by a rotation, φ, and translations, y and z, where y results in trivial solutions for this analysis so will be neglected moving
forward.
As this body undergoes rotation and translation, different combinations of vertices become submerged. This results in
distinct, piecewise smooth equations of motion where the position to the center of buoyancy with respect to the center of
mass, ~RB/G, can be calculated by determining the centroid of the submerged volume, Vsub, as a sum of multiple volumes.
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(a) Case 1 (2 coexisting solutions)
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(b) Case 2 (4 coexisting solutions)
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(c) Case 3 (8 coexisting solutions)

Figure 2: Bifurcation diagrams for rectangular prisms with varying geometric parameters (a, b, `, and m). Qualitatively different
solutions with coexisting equilibria and complex stability behavior are observed by altering these parameters.
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Defining ~RB/G = [0, R1, R2]
T and fb = ρVsubg, the equations of motion governing this system can be expressed as

φ̈ =
fb
I

[
R1 cosφ−R2 sinφ

]
, z̈ =

1

m

[
fb −mg

]
.

Setting φ̈ = z̈ = 0 and solving for φ and z gives the equilibrium solutions, φ̃ and z̃, for a given set of system parameters.
The stability of this position can then be determined by solving the characteristic equation |A − λI| = 0, where A is
the system’s Jacobian evaluated at a given set of equilibria points, and determining when R(λ) > 0. These values were
obtained as a function of k using numerical continuation methods to produce the bifurcation diagrams shown in Fig. 2
where Figs. 2a, 2b, and 2c were generated for three Cases with varying values of a, b, `, and m.
For all three Cases, the prism has trivial equilibrium solutions for small values of k. These solutions correspond to the
prism floating in an upright position and remain stable until k reaches some critical point. These points are labeled on the
bifurcation diagrams and can be determined analytically by setting λ = 0 and solving the characteristic equation to get
kc =

6m2+ρ2b4`2

12ρb`m .

As k is increased beyond kc, all three Cases undergo supercritical pitchfork bifurcation in φ̃ producing a branch of
solutions that correspond to the prism’s tilted equilibrium positions. For Case 1, this branch remains stable until it
intersects with the other trivial solution branch π radians from the upright.
In Case 2, this branch undergoes more complicated behavior. At approximately π

3 radians, this branch encounters a
turning point where the solution becomes unstable. At this point, the solution doubles back on itself and remains unstable
until approximately 2π

3 radians when it regains stability and doubles back again. From here the solution remains stable
until it eventually intersects with the trivial solution at π radians. These turning points result in the system exhibiting
metastability for certain ranges of k. This coexistence of stable attractors demonstrates that small changes in k at or near
these critical points can cause the system to undergo significant changes in orientation.
Case 3 shows similar behavior to Case 2 but undergoes six turning points instead of just two. As a result, the system in
Case 3 is metastable with eight simultaneous stable equilibria points for a range of k. While this range is smaller for Case
3, the implications on the system are the same as discussed for Case 2 with even more possible equilibrium orientations.
While φ̃ is evolving as a function of k, corresponding changes in z̃ occur. These changes, however, are small in comparison
to the scale of the prism and occur only to maintain a constant Vsub while the prism is undergoing rotation.

(a) Experimental Setup
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(b) Results superimposed on predictions

Figure 3: Experimental testing to validate the bifurcation results produced numerically by measuring φ̃ as a function of varying k.

To validate the numerical results obtained above, an experiment was designed to test the equilibrium positions of a
rectangular prism as a function of k. Fig. 3a shows the acrylic prism used for testing where sliding internal weights were
used to adjust k without altering the body’s mass or geometry. Image processing was used to determine corresponding
equilibrium positions where results were reported for only the tilt angle because z̃ was too small to measure accurately
in the lab. The geometry tested corresponds to a case which numerical results predicted would exhibit coexisting stable
solutions around the point φ̃ = π

2 . The results from these experiments are superimposed over the bifurcation diagram
produced numerically to allow for comparison and are shown in Fig. 3b. These results match well with numerical
predictions. As expected, none of the unstable equilibrium positions were able to be measured as evidenced by the jumps
in data points around unstable branches. Quantitatively, these results have an R-Squared value of 0.9987 and an RMSE
of 0.0675 radians. This agreement constitutes sound validation in the model and gives confidence that the other Cases
studied numerically would follow predictions as well.
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