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Summary. Spars are stable floating platforms extensively used in the oil-gas industry. Such structures can experiment large amplitude 

motions under the actions of loads such as currents, winds, vortex-induced forces and waves. Such large-amplitude motion implies that a 

nonlinear dynamic analysis must be performed to capture complex phenomena. A feasible method to study the nonlinear dynamic 

phenomena is using the nonlinear normal modes [NNMs] theory. As an extension of the concept of linear normal mode, the NNMs 

could be used to reduce the order of the problem. Such reduced order models are used in this work to study the global coupling dynamic 

response to a heave-roll-pitch model of a spar platform under the action of wave and vortex-induced forces. First the nonlinear normal 

modes are analytical derived using the invariant manifold definition and the asymptotic method. The reduced order model is thus 

obtained, consisting of a single degree of freedom nonlinear oscillation for each NNM. These 1-DOF nonlinear oscillators are used to 

study the free and forced vibration of the spar and also to perform a parametric analysis of the problem. Important nonlinear phenomena 

are investigated such as multiple solutions, instabilities, multiplicity of modes, internal and parametric resonances. The results obtained 

using the reduced order models are compared to full integration of the coupled nonlinear equations of motion of the spar in order to 

verify the validity of the order reduction. 

Introduction 

 

Spars are suitable offshore platforms due to their adaptability to wide range of water depth and good motion 

performance [1][2]. Recently they have been used as floating offshore wind turbine[3] or wave energy converters [4]. 

A spar platform consists of a deep-draft and large-diameter cylinder that floats upright in the water and is 

characterized by a small water plane area and a large mass. As the use of these floating structures are pushed to deep 

water conditions they are becoming more susceptible to large amplitude motions due to offshore environmental loads. 

In this context a nonlinear analysis must be performed to anticipate some adverse conditions that could arise from 

complex nonlinear dynamic phenomena such internal and parametric resonances and instabilities that could threat the 

safe operational conditions of such structures. A full numerical nonlinear analysis of a spar vibration problem in 

offshore conditions requires very powerful computer resources and turn the design process a very cumbersome task 

[5]. A reduced order model could help offshore engineers in pre-design phases by offering insight on what nonlinear 

phenomena could appear in the vibration of spar floating platforms and for which parameter sets these phenomena are 

potentially dangerous to their structural integrity. The nonlinear normal modes could be used to derive such reduced 

order models. The nonlinear normal modes theory have been successfully used to study a large set of different 

practical problems including spar platforms[6]. The problem of heave-pitch coupling response of a spar under wave 

loads was studied by the authors using the nonlinear normal modes theory. However the inclusion of roll in the 

analysis is important to capture complex nonlinear phenomena such as roll-pitch parametric resonance. In this work 

the nonlinear coupled response of heave-roll-pitch three-degrees-of-freedom spar model under the action of wave 

excitation and vortex-induced force is investigated using a reduced order model based on the nonlinear normal modes 

theories. Nonlinear phenomena such as multiplicity of modes, unstable modes and solutions, multimodal motions are 

investigated through a parametric analysis. The stability of the solution is investigated by the application of the 

Floquet theory and Mathieu stability charts. Internal resonances are detected by singularities on the invariant manifold 

polynomial expansions. The results of the reduced order model obtained by the NNM approach are compared to the 

numerical solution of the original equations of motion. The good agreement between both solutions confirms the 

usefulness of the NNM in the nonlinear analysis of the spar platform and similar floating or compliant structures. 

Structural model 
The global dynamics of floating structures is generally modelled by rigid-body equations of motion [5]. This problem 

is governed by a six degrees of freedom system: three translational motions ( x1 – surge, x2 – sway, and x3 – heave ); 

and three rotational motions ( x4 – roll, x5 – pitch, and x6 - yaw). The six degrees-of-freedom for the spar platform are 

shown in Figure 1. The system analysis can be reduced solely to the analysis of the heave (x3), roll (x4 ), and pitch 

(x5) motions. This fact is due to the model symmetry, the relevance of the heave and pitch motions for the safe 

operation of the riser and mooring systems, and possible internal resonance associated to these types of motion. The 

first-order wave force is included in roll and pitch directions, while the vortex-induced force is considered in roll 

motion. The coupled nonlinear equations of motion can be written as: 

 

( )tFxaxaxxx wωωµ cos2 3
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(eq. 1-c) 

where the dot above the variables represents its time derivatives, and: 



 

ENOC 2017, June 25 – 30, 2017, Budapest, Hungary 
 

( )33

3
3

2 mm

B

+
=µ ,

( ) 5,4
2

=∀
+

= i
II

B

ii

i
iµ , ( )33

2

3
mm

gAw

+
= ρω ; ( ) 5,42 =∀

+
∇= i

II

GM

ii

iω , 

( )33

3
2 mm

HgA
a

gw

+
=

ρ
,

( )
( ) 5,4

2

2 =∀
+

+∇= i
II

GMgA
a

ii

w
i

ρ
, ( )3

3
3

mm

F
F

+
= , 

( ) 5,4=∀
+

= i
II

F
F

ii

i
i

 

(eq.2) 

The parameters and variables definitions are showed in Table 1. The spar parameters used in this study are the same 

used in [7]. 

 

ρ  Sea water mass density 
33m  Spar added mass 

wA  Water plane area I  Spar moment of inertia 

g  Gravitational acceleration 
iiI  Spar added moment of inertia 

for roll (i=4) and pitch (i=5) 

gH  Distance from the centre of 

gravity to the undisturbed 

water surface 

iB  Radiation damping 

GM  Longitudinal metacentric 

height 
5,3F  First order wave exciting 

force for heave and pitch 

∇  Displaced water volume  4F  Vortex-induced force 

Figure 1 –  Six degrees-of-freedom 

of a spar platform. 

m  Spar mass 
vw ωω ,  Wave and vortex-induced 

force frequencies 

respectively 

Table 1 – Spar parameters. 

Due to the geometrical symmetry of the spar platform the roll and pitch coefficients a4 and a5 are approximated equal 

and thus the respective natural frequencies (ω4=ω5). Using this symmetries and by including the new dependent 

variables: 
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and the following dimensionless frequency parameter: 
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one obtains the set of equations of motion in the new variables spaces: 
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( )tFaa vωξξξωξµξ cos2 453434
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(eq.5-b) 

( )tFaa wωξξξωξµξ cos2 553535
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(eq. 5-c) 

 

Nonlinear normal modes 

The nonlinear normal mode (NNM) invariant manifold based definition [8] is used to derive reduced order models of 

the spar vibration problem. The NNMs are, using this definition, an invariant manifold surfaces that pass through the 

stable equilibrium configuration of the problem and are tangent to the underlining linear modes at this equilibrium 

point. The system of equations of motion (eq. 5) is rewritten in the Hamiltonian form: 

{ } { } { } { }fyy == && ,ξ ; (eq.6) 

where ξι are the generalized displacements and yi are the corresponding velocities. The generalized force vector {f} 

consists of nonlinear moments that in general depend upon {ξ} and {y}. 

Each nonlinear mode motion can be entirely parameterized in terms of a single pair of generalized coordinates of the 

system, the displacement and velocity of a given degree-of-freedom, which is called master pair. Since the equations 

of motion (5) are uncoupled in the linear terms, each degree-of-freedom is chosen to derive its correspondent 

nonlinear mode. As an example the heave degree-of-freedom displacement-velocity pair, ξ3 e y3, is chosen as the 

master pair: 

33, yvu == ξ ; (eq.7) 

The other slave pairs (pitch and roll in the present example) are represented in terms of u and v by the constraint 

functions (Pi, Qi): 



 

ENOC 2017, June 25 – 30, 2017, Budapest, Hungary 
 

( ) ( ) 5,4,3,,, =→== ivuQyvuP iiiiξ ; (eq.8) 

where, particularly, P3(u,v)=u, Q3(u,v)=v.  

The next step is to eliminate the explicit time dependence of the equations. This is done by performing the time 

derivatives of the constraint equations. By replacing the time derivative resulting from the chain rule into the 

equations of motion (5) and by the use of the master pair definitions (7) and the slave relations (8), the following 

system of four second order partial differential equations is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 5,4,,...,,,;,,...,,,
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 (eq.9) 
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(eq.10) 

The determination of the restraint equations leads to an order reduction of the problem, since their substitution in the 

original equations of motion results in a single degree-of-freedom nonlinear modal oscillator. Except for a few special 

cases, there is no closed exact solution for the differential partial equations that govern the invariant manifold 

expressed by (9) and (10). The solution can be derived in an analytical form using a Taylor series around the 

equilibrium configuration, taken here for simplicity as {ξ0} = 0. Accordingly, the constraint functions can be written 

up to third order terms as: 
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The substitution of equations (11) and (12) into the equation of motion results in an algebraic system of equations in 

terms of the constraint equations coefficients aij and bij and they can be sequentially solved. The so-obtained solution 

is valid only locally [9], and the validity domain is not known a priori, being determined only by comparison with 

numerical solutions of the original problem. 

 

Nonlinear modal analysis 

 

The substitution of the constraint equations into the original free undamped equations of motion results in a one-

degree-of-freedom nonlinear oscillator, called modal oscillator and the standard well-known techniques developed to 

analyse 1-DOF oscillators can be used to study the dynamics of the problem and the slave-pair motions can be 

recovered using the restraint equations.  

The modal oscillator for the heave mode is equal to: 

02

3 =+ uu ω&&
 

(eq. 13) 

The resulting modal oscillator of the similar mode is linear. This result indicates that this is a fundamentally linear 

similar mode. No consistent additional mode is obtained using the master pair given by equation (7). Physically this 

means that a purely vertical spar motion can occur, without any rotation. This essentially translational motion is 

described, according to the hypothesis here adopted, by the linear equation of motion (13). 

Next the generalized roll motion coordinates are used as the master pair and those related to heave and pitch as the 

slave pair. No similar mode is found using this master pair. The following nonsimilar mode is identified: 
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(eq. 14) 

For the pitch motion coordinates one obtains: 
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 (eq. 15) 

Since the roll and pitch natural frequencies are identical due to physical symmetrical features of the spar, the roll (14) 

and pitch (15) equations are identical and it is sufficient to analyse the motion in one of these nonlinear normal modes 

to describe their nonlinear behaviour. In the case of 1:2 internal resonance (ε=2 ) the coefficients of the nonlinear 

terms of both 1-DOF oscillators will result in singularities indicating that the invariant approach cannot be used and a 

multimode analysis (using both heave and roll (or pitch) generalized coordinates as master pairs) must be performed, 

which, in the present case, result in 2-DOF order reduction of the problem instead of the 1-DOF obtained here. This 

results from the fact that the internal resonance is a violation of the invariance characteristic of the manifold of the 
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modelled (master) model [10]. Such feature of the NNM analysis permits to detect internal resonances. This is 

important in systems with a high number of degrees-of-freedom, where possible internal resonances are not known a 

priori. Both nonlinear single degree-of-freedom models have odd nonlinearities. In addition to the internal resonance, 

equations (14) and (15) show that the cubic geometric nonlinearity disappears when 2=ε . The sign of the cubic 

nonlinear terms are opposite which means that the system can exhibits a softening or a hardening behaviour according 

to the value of ε while oscillating in the roll and pitch mode. 

The spar nonlinear oscillators (13-15) corresponds to an order reduction of the problem and they are used to derive 

important vibration features such as time response, frequency-amplitude in an analytical form, which are helpful 

information in the design phases of such offshore structures.  

The modal lines derived from the time results for each modal oscillator are shown in Figure 3, the ξi coordinates are 

divided to ω5
2
 in order to facilitate the parametrical analysis. Figure 3(a) shows the heave similar mode and 3(b) the 

pitch and roll nonsimiliar modes. One can note from Fig. 2 (b) that the modal curves are parabolic and they are 

influenced by the relation between the heave and roll (pitch) natural frequencies given by the ε parameter. Those 

curves have an horizontal tangent at point (0,0) in the configuration space due to the fact that the original equations of 

motion (5) are uncoupled in the linear terms. 

 

  
(a) (b) 

Figure 2 – Modal Curves: a) Heave mode; b) Roll and Pitch modes. 

 

The frequency-amplitude curves can be analytically obtained for the three modes using the harmonic balance method 

applied to their respective modal oscillators, assuming the following approximated solution, in face of the observed 

nonlinearities in the modal oscillators: 

( ) ( )tXtu ωsin=
 

(eq. 16) 

For the pitch (and roll mode) one obtain the following relation between the amplitude and frequency: 
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(eq. 17) 

where Ω is frequency dimensionless parameter defined as: 

5ω
ω=Ω
 

(eq. 18) 

 

By studying the signal of the radicand of expression (17) one can determines where the spar has a softening or 

hardening behaviour according to the values of ε, this analyis is done using the chart presented in Figure 3. The curve 

ε=1/3(18+6Ω2
)

1/2
 marks the sign alternation of the resultant of the cubic terms of (15), for ε values between zero and 

(8/3)
1/2

 , as the showed example where ε=0.5, the spar motion on the heave mode has a softening behaviour. On the 

other side for ε values between (8/3)1/2 and 2 (internal resonance - exclusively) the only possible solution to the spar 

while vibrating in the pitch mode presents a hardening behaviour (the curve for ε=1.75 in Fig.3), above ε=2 the 

solution presents again a softening behaviour (the showed curve for ε=2.5 in Fig. 3). 

The degree of agreement between the solution using the modal oscillators with the numerical solution up to some 

values of amplitudes can be used to reveal the validity region of the asymptotic method used to construct the reduced 

order model as showed in Figure 4 for ε=3.0 and ε=1.75 respectively. Fig. 4.a) shows a better agreement for larger 

amplitude values since case showed in Fig. 4.b) is very near to the internal resonance. The fidelity is small because it 

depends on the amplitude of motion as well as the proximity to internal resonances [11]. Far from the internal 

resonance region the asymptotical expansion has a better agreement as one can observe by comparing the phase 

portrait obtained using the modal oscillators and the numerical integration of the system of equations of motion. The 
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phase portraits are shown in Figure 5 for ε=0.5. The good agreement between both solutions, observed in Fig. 5, 

confirms the effectiveness of the reduced order model derived from the nonlinear modal analysis over the domain of 

validity of the series used in the approximated solution of the invariant manifold equations. 

 

 
 

Figure 3 – Chart for the influence of ε on the frequency-amplitude curves for the pitch (roll) mode. 

 

 

  
(a) (b) 

Figure 4 – Frequency-amplitude relations for pitch (roll) mode: a) softening behaviour and b) hardening behaviour. 

 

Nonlinear multimodes 

The internal resonance leads to a violation of the invariance of the one mode invariant manifold [12]. This fact 

demands a multimodal analysis. In order to generalize the invariant manifold based definition of nonlinear normal 

modes Boivin and co-workers introduced the concept of multi-mode invariant manifold, see [13] and [14]. The multi-

mode manifold is constructed via the choice of Mm modes of interest, called modeled modes or master modes 

gathered in a subset Sm. The generalized coordinates of the master pairs are expressed by vectors {um} and {vm}  
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respectively. The invariant manifold associated to the modeled modes has a dimension equal to 2Mm within the 2n 

space of the system with n degrees of freedom. The parameterization of the invariant manifold is done by using the 

Mm pairs of displacements and velocities: 

 

Miiii Sivyu ∈∀== ,ξ  (eq. 19) 

The slave coordinates are written in terms of the following constraint equations: 

 

{ } { }( ) { } { }( ) MMMiiMMii SivuQyvuP ∉∀== ,,,ξ  (eq. 20) 

By the substitution of (19) and (20) in the equations of motion (6), the following partial differential equations 

governing the multi-mode invariant manifold are obtained: 
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The asymptotical method using Taylor series about the SM master pair coordinates are used to obtain the 

approximated analytical solution of equations (21) and (22). The substitution of the constraint functions in the 

equations of motion reduces the problem in an M-DOF multi-modal oscillator. 

 

Nonlinear multi-modal analysis 

In order to study the case of internal resonance (1:2) between the heave and pitch mode given by ε=2 it is necessary to 

retain the heave and pitch (or roll) as modeled modes in the derivation of the multi-mode manifold, i.e.: 

Miiii Sivyu ∈=∀== 5,3,ξ  (eq. 23) 

The reduced order model has 2-DOF (heave and pitch) and is given by the following system of equations of motion: 

02
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3 =−+ uuu ωε&& ; (eq.24-a) 

0535

2

55 =−+ uuuu ω&& . (eq.24-b) 

Both equations (24) have just quadratic nonlinearities and the system is uncoupled in the linear terms. If the roll is 

considered a modelled mode instead of the pitch mode, the equations of motion of the 2-DOF reduced order model 

are identical, due to the physical symmetries of the spar platform. 

The numerical integration of (24) can be used to construct the phase portrait for heave and pitch sections in the multi-

mode manifold vibration of the spar when the internal resonance occurs (ε =2)as showed in Figure 6. Both the heave 

(a) and pitch (b) sections show a center around the origin. The modal line for pitch and heave coordinates are showed 

 
 

Figure 5 – Phase portrait for pitch (roll) mode. 
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in the configuration subspace showed in Figure 7, since there is no linear correspondence to the multi-mode, the 

modal curve is not tangent at the origin as in the case of the individual modes showed in Fig.2. 

The harmonic balance method can be used to obtain the frequency-amplitude relations to the 2-DOF (24) by using the 

following expressions  

  
(a) (b) 

Figure 6 – Phase portrait for the multi-mode (ε=2): a) heave and b) pitch. 

 

 
 

Figure 7 – Configuration space for the heave-pitch multi-mode (ε=2). 
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(eq. 25-a) 

( ) ( )tDCtu ωcos5 += ; (eq. 25-b) 

and using the following expressions: 
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(eq. 26) 

One can observe that the both heave and pitch motions present a softening behaviour in the case of the internal 

resonance 1:2 as showed in Figure 8, while the amplitude of pitch motions are higher than the heave amplitudes. 

 

Conclusions 
A reduced order model to study the nonlinear motion of a spar platform was derived. The model reduction was done 

using the nonlinear normal modes of the system. The spar has one similar mode and two nonsimilar modes. The 

motion in the pitch and roll nonlinear modes could present a hardening behaviour and a softening behaviour 

depending the relation between the natural frequencies of the heave and pitch (roll) motions. The system presents an 

internal resonance 1:2 between the heave and pitch motion. The multi-mode invariant manifold was used to study the 

motion in the internal resonance case. The results of the reduced model are compared to full numerical integration of 

the equations of motion which confirms the efficiency of the use of NNM-based reduced order methods in the studied 

examples. The reduced order models also allow fast parametric analysis which can be used in the pre-design phases. 
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This is a work in progress. Further work will include the forced vibration analysis include the wave-induced and 

vortex-induced motions and a more precise ocean loads consideration (buoyancy, added mass, and current action). 

 
 

Figure 8 – Amplitude-Frequency relation at internal resonance (ε=2). 
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