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On the mathematical justification of viscoelastic shell models
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Summary. We consider a family of linearly viscoelastic shells of thickness 2ε and we use asymptotic analysis to study the limit
behaviour of the three-dimensional problems and their solutions when ε tends to zero. Then, depending on the order of the applied
forces, the geometry of the middle surface and the set where the shell is clamped, we find two sets of limit two-dimensional equations,
namely, the viscoelastic membrane or flexural problems. In both cases, we find a model which presents a long-term memory that takes
into account the deformations at previous times. We provide the existence and uniqueness of solution and convergence results.

Introduction

In the last decades, many authors have applied the asymptotic methods in the three-dimensional elasticity problems
to derive new reduced one-dimensional or two-dimensional models and justify the existing ones. A complete theory
regarding elastic shells can be found in [1], where models for elliptic membranes, generalized membranes and flexural
shells are presented. It contains a full description of the asymptotic procedure that leads to the corresponding sets of
two-dimensional equations. More recently in [2] the obstacle problem for an elastic elliptic membrane has been identified
and justified as the limit problem for a family of unilateral contact problems for elastic elliptic shells. A large number
of actual physical and engineering problems have made it necessary the study of models which take into account effects
such as hardening and memory of the material. An example of these are the viscoelastic models (see for example [3, 4]).
In some of these models, we can find terms which take into account the history of previous deformations or stresses of the
body, hence the reference to long-term memory. For a family of shells made of a long-term memory viscoelastic material
we can find in [5] the use of asymptotic analysis to obtain the limit two-dimensional membrane and flexural equations.
In this work, we analyse the asymptotic behaviour of the scaled three-dimensional displacement field of a shell made of
a short-term memory viscoelastic material, as the thickness approaches zero. We consider that the displacements vanish
in a portion of the lateral face of the shell, obtaining the equations of a viscoelastic membrane shell or of a viscoelastic
flexural shell depending on the order of the forces and the geometry. We will follow the notation and style of [1], where
the linear elastic shells are studied.

The three-dimensional linearly viscoelastic shell problem

In what follows, we will use summation convention on repeated indices. Moreover, Latin indices i, j, k, l, ..., take their
values in the set {1, 2, 3}, whereas Greek indices α, β, σ, τ, ..., do it in the set {1, 2}. Also, we use standard notation for
the Lebesgue and Sobolev spaces. Also, for a time dependent function u, we denote u̇ the first derivative of u with respect
to the time variable. Let ω be a domain of R2, with a Lipschitz-continuous boundary γ = ∂ω. Let y = (yα) be a generic
point of its closure ω̄ and let ∂α denote the partial derivative with respect to yα.
Let θ ∈ C2(ω̄;R3) be an injective mapping such that the two vectors aα(y) := ∂αθ(y) are linearly independent. These
vectors form the covariant basis of the tangent plane to the surface S := θ(ω̄) at the point θ(y). We can consider the two
vectors aα(y) of the same tangent plane defined by the relations aα(y) · aβ(y) = δαβ , that constitute the contravariant

basis. We define the unit vector, a3(y) = a3(y) :=
a1(y)∧a2(y)
|a1(y)∧a2(y)| , normal vector to S at the point θ(y), where ∧ denotes

vector product in R3. We can define the first fundamental form, given as metric tensor, in covariant or contravariant
components, respectively, by aαβ := aα · aβ , aαβ := aα · aβ , the second fundamental form, given as curvature tensor,
in covariant or mixed components, respectively, by bαβ := a3 · ∂βaα, bβα := aβσ · bσα, and the Christoffel symbols of the
surface S by Γσαβ := aσ · ∂βaα. The area element along S is

√
ady where a := det(aαβ).

Let γ0 be a subset of γ, such that meas(γ0) > 0. For each ε > 0, we define the three-dimensional domain Ωε := ω ×
(−ε, ε) and its boundary Γε = ∂Ωε. We also define the parts of the boundary, Γε+ := ω×{ε},Γε− := ω×{−ε} and Γε0 :=
γ × [−ε, ε].
Let xε = (xεi ) be a generic point of Ω̄ε and let ∂εi denote the partial derivative with respect to xεi . Note that xεα = yα and
∂εα = ∂α. Let Θ : Ω̄ε → R3 be the mapping defined by Θ(xε) := θ(y) + xε3a3(y) ∀xε = (y, xε3) = (y1, y2, x

ε
3) ∈ Ω̄ε.

Furthermore for ε > 0, gεi (x
ε) := ∂εiΘ(xε) are linearly independent and hence, the three vectors gεi (x

ε) form the
covariant basis of the tangent space at the point Θ(xε) and gi,ε(xε) defined by the relations gi,ε · gεj = δij form the
contravariant basis at the point Θ(xε). We define the metric tensor, in covariant or contravariant components, respectively,
by gεij := gεi · gεj , gij,ε := gi,ε · gj,ε, and Christoffel symbols by Γp,εij := gp,ε · ∂εi gεj .
The volume element in the set Θ(Ω̄ε) is

√
gεdxε and the surface element in Θ(Γε) is

√
gεdΓε where gε := det(gεij).

Besides, let T > 0 be the time period of observation and we denote by uεi : [0, T ]× Ω̄ε → R3 the covariant components
of the displacements field, that is Uε := uεig

i,ε : [0, T ]× Ω̄ε → R3. We assume that the shell is subjected to a boundary
condition of place; in particular, the displacements field vanishes in Θ(Γε0), this is, a portion of the lateral face of the shell.
We consider that the body is made of a Kelvin-Voigt viscoelastic material, which is homogeneous and isotropic, so that
the material is characterized by its Lamé coefficients λ ≥ 0, µ > 0 and its viscosity coefficients, θ ≥ 0, ρ ≥ 0 (see for
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instance [3, 4]), independent of ε. Under the effect of applied forces, the body is deformed and we can find that uε = (uεi )
verifies the following variational problem of a three-dimensional viscoelastic shell in curvilinear coordinates:

Problem 1 Find uε = (uεi ) such that: uε(t, ·) ∈ V (Ωε) = {vε = (vεi ) ∈ [H1(Ωε)]3;vε = 0 on Γε0} ∀ t ∈ [0, T ],∫
Ωε

Aijkl,εeεk||l(u
ε)eεi||j(v

ε)
√
gεdxε +

∫
Ωε

Bijkl,εeεk||l(u̇
ε)eεi||j(v

ε)
√
gεdxε

=

∫
Ωε

f i,εvεi
√
gεdxε +

∫
Γε
+∪Γε

−

hi,εvεi
√
gεdΓε ∀vε ∈ V (Ωε), a.e. in (0, T ), uε(0, ·) = uε0(·),

where the functions Aijkl,ε := λgij,εgkl,ε + µ(gik,εgjl,ε + gil,εgjk,ε), Bijkl,ε := θgij,εgkl,ε + ρ
2 (gik,εgjl,ε + gil,εgjk,ε),

are the contravariant components of the three-dimensional elasticity and viscosity tensors, respectively. Moreover, the
terms eεi||j(u

ε) := 1
2 (uεi||j + uεj||i) = 1

2 (∂εju
ε
i + ∂εi u

ε
j) − Γp,εij u

ε
p, designate the covariant components of the linearized

strain tensor associated with the displacement field Uεof the set Θ(Ω̄ε). Besides, f i,ε and hi,ε denote the contravariant
components of the volumic and surface force densities, respectively and uε0 denotes the initial “ displacements ".
We prove the existence and uniqueness of solution of the Problem 1 for ε > 0 small enough. Then, under suitable
regularity hypotheses for the applied forces and initial condition then uε ∈W 1,2(0, T ;V (Ωε)).

Formal Asymptotic Analysis. Obtention of the two-dimensional limit problems

In order to perform the asymptotic analysis we write Problem 1 defined over a reference domain independent of ε. Then,
we assume that there exists an asymptotic expansion of the unknown and its initial condition and we substitute them into
the equations. Considering different order for the applied forces we are able to identify terms of the asymptotic expansion
proposed. In particular, we find in [6] that its main leading term is independent of the transversal variable x3. Therefore, it
can be identified with a function ξ ∈ [H1(ω)]3 such that ξ = 0 on γ0. Then, we find that ξ is solution of two different sets
of equations depending on whether or not the space V0(ω) := {η = (ηi) ∈ V (ω), γαβ(η) = 0 in ω}, contains non-zero
functions. Furthermore, considering the right spaces where these problems are well posed, we obtain that the de-scaled
function ξε is the unique solution of what we have identified as the viscoelastic membrane or viscoelastic flexural problem,
respectively. For instance, for the viscoelastic membrane case we obtain the following limit two-dimensional problem:

Problem 2 Find ξε such that: ξε(t, ·) ∈ VM (ω) := H1
0 (ω)×H1

0 (ω)× L2(ω) ∀ t ∈ [0, T ],

ε

∫
ω

aαβστ,εγστ (ξε)γαβ(η)
√
ady + ε

∫
ω

bαβστ,εγστ (ξ̇
ε
)γαβ(η)

√
ady

− ε
∫ t

0

e−k(t−s)
∫
ω

cαβστ,εγστ (ξε(s))γαβ(η)
√
adyds

=

∫
ω

pi,εηi
√
ady, ∀η = (ηi) ∈ VM (ω), a.e. in (0, T ), ξε(0, ·) = ξε0(·),

where, γαβ(η) := 1
2 (∂αηβ + ∂βηα) − Γσαβησ − bαβη3 denote the covariant components of the change of metric tensor

associated with a displacement ηiai of S, pi,ε(t) :=
∫ ε
−ε f

i,ε(t)dxε3 + hi,ε+ (t) + hi,ε− (t) and hi,ε± (t) = hi,ε(t, ·,±ε)
and where the contravariant components of the fourth order two-dimensional tensors aαβστ,ε, bαβστ,ε, cαβστ,ε arised
naturally in the asymptotic analysis performed.

We prove the existence and uniqueness of solution of Problem 2. Under suitable regularity for the applied forces and initial
condition then ξε ∈W 1,2(0, T ;VM (ω)). We also provide convergence theorems that justify the equations obtained.

Conclusions

We have found and justified limit two-dimensional models for viscoelastic membrane shells and viscoelastic flexural
shells. To this end we used the asymptotic expansion method to identify the variational equations from the scaled three-
dimensional viscoelastic shell problem. The main novelty is that from the asymptotic analysis of the three-dimensional
problems which include a short-term memory represented by a time derivative, a long-term memory arises in the two-
dimensional limit problems, represented by an integral with respect to the time variable.
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