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Summary. In this contribution we shall outline recent results on two chemical oscillation models: the autocatalytic model and the Olsen

model. For the autocatalator, we extend the local theory of singularities in fast-slow polynomial vector fields to classes of unbounded

manifolds which lose normal hyperbolicity due to an alignment of the tangent and normal bundles. A projective transformation is

used to localize the unbounded problem. Then the blow-up method is employed to characterize the loss of normal hyperbolicity for

the transformed slow manifolds. Our analysis yields a rigorous scaling law for all unbounded manifolds which exhibit a power-law

decay for the alignment with a fast subsystem domain. Furthermore, the proof establishes a practical growth bound for the oscillations

in autocatalytic reactions. For the Olsen model, we are just going to state the main results in the presentation. The Olsen model is

four-dimensional, not in a standard form required by geometric singular perturbation theory and contains multiple small parameters.

These three obstacles are the main challenges we resolve by our analysis. Scaling and the blow-up method are used to identify several

subsystems. The results presented here provide a rigorous analysis for two oscillatory modes. In particular, we establish the existence

of non-classical relaxation oscillations in two cases.

Introduction

Dynamics with separated time scales is ubiquitous in applications. One area, where several time scales naturally appear in

the modelling process are chemical reactions. It often occurs, and is quite reasonable also from an abstract point of view,

to encounter different chemical reactions occurring at widely separated reaction rates. After using mass-action kinetics to

derive ordinary differential equations (ODEs) from the abstract reactions and by using a suitable non-dimensionalization,

one frequently obtains systems with multiple time scales. The basic case in this context are fast-slow systems with two

time scales. The general form can be written as:

ε dx
dτ = εẋ = f(x, y; ε),
dy
dτ = ẏ = g(x, y; ε),

(1)

where f, g are smooth maps, ε > 0 is a small parameter indicating the time scale separation between the fast variables

x ∈ R
m and the slow variables y ∈ R

n. In the singular limit ε → 0, one obtains from (1) a differential-algebraic equation

constrained to the critical set

C0 := {(x, y) ∈ R
m+n : f(x, y; 0) = 0}. (2)

As long as the set C0 is a sufficiently smooth manifold and if it satisfies the normal hyperbolicity condition that the matrix

Dxf(x, y; 0) ∈ R
m×m has no eigenvalues with zero real part for (x, y) ∈ C0, Fenichel’s Theorem converts (1) into a

regular perturbation problem near C0. However, if normal hyperbolicity is lost, then one requires specialized analysis.

Essentially, this loss of normal hyperbolicity is directly connected to bifurcations/singularities of the fast subsystem,

which can be obtained from (1) by changing the time scale to t := τ/ε and then taking the singular limit ε → 0

dx
dt = f(x, y; 0),
dy
dt = 0.

(3)

In this contribution, we shall focus on the analysis of several different situations, where normal hyperbolicity is lost. In

both chemical systems we study, the understanding of the associated singular parts of the critical manifold is crucial to

describe the formation of oscillatory patterns, which are much more complicated than classical relaxation oscillations.

The Autocatalator

A prototypical case of an autocatalytic system is given by four reactions

P → Y, Y → X, Y + 2X → 3X, X → Z (4)

where X,Y are the two main reactants, P is a constant ’pool’-chemical and Z is the product. Then it can be shown, using

standard mass-action kinetics and non-dimensionalization, that (4) leads to a two-dimensional system of ODEs

εẋ = yx2 + y − x,
ẏ = ξ − yx2 − y,

(5)

where the phase space variables x, y are dimensionless concentrations associated to X,Y respectively and ξ is a parameter.

It is natural to assume that the concentrations are non-negative x, y ∈ R
+
0 . Furthermore, note that the nonlinear term

arises due to the autocatalytic reaction part Y + 2X → 3X . It is well-known that the 2D-autocatalator (5) can exhibit an

attracting periodic orbit for certain ranges of the parameters. The critical manifold is given by

C0 = {yx2 + y − x = 0} =

{

y =
x

1 + x2

}

. (6)
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Observe that C0 is an unbounded smooth manifold. The angle between the tangent spaces TpC0 and the hyperplanes

{p ∈ C0 : y = const.} decays to zero as x → +∞. This alignment, which is expected to imply a loss of normal

hyperbolicity in the system at infinity, already causes substantial difficulties in the rigorous analysis of the dynamics of

the 2D autocatalator model. Given these examples, it is desirable to build a general theory of fast-slow systems with

unbounded critical manifolds. The main contributions summarized in this work, stated here in a non-technical form, are:

(a) we study a general class of critical manifolds, which may have an arbitrary power-law decay y ∼ 1/xs (as x → ∞)

for the alignment with a fast subsystem domain. This includes the autocatalytic critical manifolds as special cases and

answers open questions arising from various numerical studies; (b) using the blow-up method we give a rigorous proof

when normal hyperbolicity for a perturbation of the critical manifold fails i.e. which is the largest region up to which a

slow manifold, obtained as a perturbation of the critical manifold, is normally hyperbolic. The relevant scaling law turns

out to be given by

(x, y) ≍
(

O(ε−1/(s+1)),O(εs/(s+1))
)

, as ε → 0, (7)

where −s is the power law exponent for the asymptotic decay of the critical manifold; (c) on a technical level we contribute

to a further development of the blow-up method by augmenting it with an ’optimality-criterion’ of blow-up coefficients

which have to be chosen in the analysis; (d) the scaling (7) also has immediate consequences for the asymptotics of

oscillatory patterns.

The Olsen Model

Experimental observation of oscillatory dynamics in the peroxidase-oxidase (PO) reaction

2 NADH + 2 H+ + O2 → 2 NAD+ + 2 H2O (8)

led to further interest in the dynamical mechanisms. Various models have been proposed to capture the dynamics of (8).

We are going to present results for a model of the PO reaction initially proposed by Degn, Olsen and Perram. The four

ODEs are
dA
dT = −k3ABY + k7 − k−7A,
dB
dT = −k3ABY − k1BX + k8,
dX
dT = k1BX − 2k2X

2 + 3k3ABY − k4X + k6,
dY
dT = −k3ABY + 2k2X

2 − k5Y,

(9)

where (A,B,X, Y ) ∈ (R4)+0 are chemical concentrations and ki > 0 are parameters. A and B denote concentrations of

the substrates NADH and O2 while X and Y are concentrations for two free radicals. Olsen used k1 as a bifurcation

parameter and found three main distinct regimes consisting of mixed-mode oscillations (MMOs), chaos and relaxation-

type periodic oscillations. From the numerical results, it was conjectured that multiple time scales are crucial for the the

understanding of the oscillations. However, the Olsen model had resisted rigorous mathematical analysis for over thirty

years, despite it being a key motivating example to study multiple time scale dynamics in general and for the development

of the blow-up method in particular. The main obstacle for the analysis of the Olsen model is that many problems occur

simultaneously. It is four-dimensional, in nonstandard form, contains several non-folded degenerate singularities, has

three natural small parameters and a return mechanism without an S-shaped manifold. It even has multiple regimes of

different geometric multiple time scale decompositions due to the relative asymptotic limits of the small parameters. In

this contribution, we survey recent results providing a first detailed multiscale analysis of the Olsen model. We establish

existence results for several special types of periodic solutions.

Literature Summary

The contribution is a summary of results obtained recently in several works. Here we provide a very brief overview of

this body of work to which the author has contributed. The literature also contains some pointers to background results

and related extensions:

• General background on fast-slow systems [Kue15].

• Main results on the autocatalator [Kue14].

• Main results on the Olsen model [KS15].

• An introduction to the blow-up method and a calculation for hyperbolic spaces [Kue16].
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