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Summary. In this paper, we study the effect of the size of the latent reservoir and of the pool of long-lived chronically infected CD4
+ T

cells in a non-integer model for HIV dynamics with drug-resistance. We calculate the reproduction number and study the local stability

of the disease-free equilibrium. The effects of the sizes of the latent reservoir and of the pool of long-lived chronically infected CD4+ T

cells were analyzed numerically, for distinct values of the order of the fractional derivative, α. Our results are biologically reasonable.

We found that the latent reservoir in resting CD4+ T cells appears to be sufficient to maintain the plasma viral load in patients under

HAART. Moreover, the pool of long-lived chronically infected cells promotes an increase in drug-resistant virus, that escape treatment,

which turns the eradication of the plasma virus an impossible goal. These results are biologically acceptable and are observed for all

values of α.

Introduction

Over the years, the development of suitable mathematical models and the clinical practice have boosted a greater under-

standing of HIV dynamics. HIV infection damages the immune system and attacks preferentially CD4+ T cells, leading

to their depletion [18].

Treatment for HIV infected patients is extremely important. Nowadays, it consists of a cocktail of drugs, such as reverse

transcriptase inhibitors (RTIs), which inhibit the infection of CD4+ T cells by virus, and protease inhibitors (PIs), which

prevent the infected cells from producing new infectious virions. This therapy is commonly known as highly active

antiretroviral therapy (HAART). But even with treatment, HIV stays dormant within reservoirs, such as the latently

infected CD4+ T cells. These cells are infected during the primary phase of infection and remain at a resting state. This is

an obstacle for HIV eradication [9]. Latently infected cells take 6 to 48 months to be activated [29]. When they do, they

produce new virus and a viral-blip may be observed in patients.

The CD4+ T cells may be characterized as short-lived and long-lived cells. Short-lived infected CD4+ T cells produce

more virus than long-lived infected CD4+ T cells. On the other hand, the short-lived infected CD4+ T cells die more

rapidly [10].

In the literature several mathematical models have been proposed to describe the dynamics of HIV infection [17, 32, 35].

Existing models for HIV with treatment predict a rapid decline in viral load, in the first phase of infection, if treatment

is 100% effective. This decline is exponential and is defined mainly by the rate of decay of productively infected CD4+

T cells. If treatment is not 100% effective, the decline in the viral load is given, additionally, as a function of the drug

efficacy. In the second phase of infection, the decay in the viral load is slower. This is attributed to the emergence of drug-

resistant virus strains and the production of new virus by the long-lived CD4+ T cells. In this phase, viral load levels often

reach values of pre-treatment stage [14]. In 1998, Wein et al [33] present a mathematical model to predict the role of drug

regimens, based on combinations of PIs and RTIs, in the eradication of HIV-1 or in the maintenance of low viral loads.

The model includes the CD4+ T cells, macrophages (as long-lived cells) and sensitive and resistant virus. From the model

the authors infer that the behaviour of the cells and virus, and the eradication of the virus, are dependent on the strength

of the combined therapy against the mutant strain and the maximum achievable increase in the uninfected CD4+ T cell

concentration. Under certain conditions, the model suggests that a successful formula to control HIV infection would be

to start with a strong inductive therapy to reduce viral load, and proceed with a weaker maintenance regime. In 2006,

Kim and Perelson [19] study the persistence of the latently infected cells and low levels of plasma virus in HIV-infected

patients. Simulations of the model reveal that the intrinsic stability of latently infected resting memory CD4+ T cells is

the key factor to their long-term persistence. The role of ongoing viral replication to the stability of the latent reservoir is

meaningless. The presented model is also used to assess the contribution of long-lived infected cells to plasma virus. It

is found that these cells have a significant contribution to plasma virus only in the first few months of therapy, when the

viral load is above 50 copies/ml.

Fractional differentiation

Calculus of non-integer order, or Fractional Calculus (FC) has its birth in 1695 when, in a letter exchange, L’Hôpital

asks Leibniz the possible meaning of a 1/2-order derivative. Since then, several definitions for the fractional order

(FO) derivatives and integrals have been proposed and their properties studied, by mathematicians, such as Euler, Abel,

Liouville, and Riemann. In 2015, Caputo and Fabrizio [11] propose a new definition for the FO derivative with non-

singular kernel. The Caputo-Fabrizio derivative has some problems with respect to the locality of its kernel. In order

to overcome this difficulty, Atangana and Baleanu [2] present, based on the Mittag-Leffler function, a new derivative
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of FO, with non-local and non-singular kernel. A few decades ago, FC starts to be widely applied in distinct areas of

engineering, such as electronics, viscoelasticity, biology, physics, to name some [20, 7, 8, 5, 21, 28, 27, 26, 22, 15, 6, 3].

For instance, applications of the Caputo-Fabrizio derivative to the nonlinear Fisher’s reaction-diffusion equation and the

nonlinear Baggs and Freedman model can be found in [1, 4]. In epidemiology, fractional models are applied to study the

dynamics of HIV, malaria, to name a few. In 2015, Pinto et al [23] apply the fractional complex-order derivative to a model

of drug resistance in HIV dynamics. From the results of the model, the authors infer that the role of the complex-order

derivative is similar to the role of the delay in integer-order systems. The fractional order dynamics of the three stages of

HIV infection with drug-resistance is studied in [24]. In 2016, it is analysed a FO model for HIV infection where latent

T helper cells are included [25]. The order of the fractional derivative is associated to a decrease in the severity of the

disease. Moreover, the results of the simulations of relevant parameters, such as the fraction of uninfected CD4+ T cells

that become latently infected, and the CTLs proliferation rate due to infected CD4+ T cells, are biologically acceptable,

for all values of the order of the fractional derivative.

Driven by the aforesaid research, in this paper we propose a FO model for the dynamics of HIV infection and analyse the

roles of the latent reservoir and of the size of the pool of long-lived chronically infected CD4+ T cells in the persistence

of the disease. The paper is organized as follows. In Section , we present the model. In Section , we compute the

reproduction numbers of the model. Moreover we prove the local stability of the disease-free equilibrium. In Section ,

we show simulations of the full model for distinct sizes of the latent reservoir and of the pool of long-lived chronically

infected CD4+ T cells. In Section , we conclude our work.

The model

The population is partitioned into nine classes, namely, the uninfected CD4+ T cells, T , the sensitive latently infected

CD4+ T cells, LS , the resistant latently infected CD4+ T cells, LR, the short-lived sensitive productively infected CD4+

T cells, ISS
, the short-lived resistant productively infected CD4+ T cells, ISR

, the long-lived chronically sensitive pro-

ductively infected CD4+ T cells, ICS
, the long-lived chronically resistant productively infected CD4+ T cells, ICR

, the

sensitive infectious virus, VIS , the resistant infectious virus, VIR , the non-infectious virus, VNI , the cytotoxic T lympho-

cytes (CTLs), E.

The uninfected CD4+ T cells are produced at rate λT and die at rate dT . The healthy CD4+ T cells are assumed to

proliferate exponentially at rate r, until reaching the maximum carrying capacity Tmax, in the absence of virus or infected

CD4+ T cells. The uninfected CD4+ T cells are infected by virus at a rate k1 and by infected CD4+ T cells at a rate k2.

The infection rate by virus, k1, is reduced by a quantity, (1 − ǫRT ), where ǫRT , (0 ≤ ǫRT ≤ 1) is the efficacy of RTIs.

The infection rates by mutated virus are considered to be smaller. As such, we assume that mutated virus is less fit than

the wild-type. In the model, this is accounted by the parameter ψ. Upon infection, a fraction, αL, of uninfected CD4+ T

cells become latently infected. The latently infected CD4+ T cells become productively infected at rate a and die at rate

dL. A fraction, αC , of productively infected CD4+ T cells become long-lived chronically infected T cells. The short-lived

and long-lived chronically productively infected CD4+ T cells die, respectively, at rates dIS and dIC . Both are killed by

CTLs at rate k3. The sensitive virus particles are produced by short-lived and long-lived chronically sensitive productively

infected cells at rates NsdIS and NsdIC , respectively. Similarly, the resistant virus particles are produced by short-lived

and long-lived chronically resistant productively infected cells at rates NrdIS and NrdIC , respectively. Viral mutations

are accounted in the model by parameter u, which represents the probability of mutation per replication cycle. PIs prevent

virions to become productively infected. Thus, only a fraction, (1 − ǫPI), of newly produced virus is infectious, where

ǫPI , (0 ≤ ǫPI ≤ 1) is the PIs efficacy. The virus particles die at rate c. The CTLs are produced at rate λE and die at

rate dE . The proliferation rate of CTLs by infected CD4+ T cells is k6. The integer order system of ordinary differential

equations for the proposed model is given by:

Ṫ = λT + rT
(

1−
T+ISS

+ISR
+ICS

+ICR
+LS+LR

Tmax

)

− k2T (ISS
+ ISR

+ ICS
+ ICR

)− (1− ǫRT )k1VIST − ψk1VIRT − dTT

L̇S = αL(1− ǫRT )k1VIST + k2αLT (t)(ISS
+ ICS

)− (a+ dL)LS

L̇R = αLψk1VIRT + k2αLT (ISR
+ ICR

)− (a+ dL)LR

İS = (1− αC)(1 − αL)(1− ǫRT )k1VIST + k2(1− αL)TISS
+ (1− αC)aLS − k3EISS

− dIS ISS

İR = (1− αC)(1 − αL)ψk1VIRT + k2(1− αL)TISR
+ (1− αC)aLR − k3EISR

− dIS ISR

İCS
= αC(1− αL)(1 − ǫRT )k1VIST + k2(1− αL)TICS

+ αCaLS − k3EICS
− dIC ICS

İCR
= αC(1− αL)ψk1VIRT + k2(1− αL)TICR

+ αCaLR − k3EICR
− dIC ICR

V̇IS = Ns(1 − u)(1− ǫPI)(dIS ISS
+ dIC ICS

)− cVIS

V̇IR = Nrψ(dIS ISR
+ dIC ICR

) +Nsu(1− ǫPI)(dIS ISS
+ dIC ICS

)− cVIR

V̇NI = ǫPINs(dIS ISS
+ dIC ICS

)− cVNI

Ė = λE + k6(ISS
+ ISR

+ ICS
+ ICR

)E − dEE

(1)
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The fractional order model, where α ∈ (0, 1] is the order of the fractional derivative, is given below.

dTα(t)
dtα = λαT + rαT

(

1−
T+ISS

+ISR
+ICS

+ICR
+LS+LR

Tmax

)

− kα2 T (ISS
+ ISR

+ ICS
+ ICR

)− (1− ǫRT )k
α
1 VIST − ψkα1 VIRT − dαTT

dLα

S
(t)

dtα = αL(1 − ǫRT )k
α
1 VIST + kα2 αLT (t)(ISS

+ ICS
)− (aα + dαL)LS

dLα

R
(t)

dtα = αLψk
α
1 VIRT + kα2 αLT (ISR

+ ICR
)− (aα + dαL)LR

dIα

SS
(t)

dtα = (1 − αC)(1− αL)(1 − ǫRT )k
α
1 VIST + kα2 (1− αL)TISS

+ (1− αC)a
αLS − kα3EISS

− dαISISS

dIα

SR
(t)

dtα = (1 − αC)(1− αL)ψk
α
1 VIRT + kα2 (1− αL)TISR

+ (1 − αC)a
αLR − kα3EISR

− dαISISR

dIα

CS
(t)

dtα = αC(1 − αL)(1− ǫRT )k
α
1 VIST + kα2 (1 − αL)TICS

+ αCa
αLS − kα3EICS

− dαIC ICS

dIα

CR
(t)

dtα = αC(1 − αL)ψk
α
1 VIRT + kα2 (1− αL)TICR

+ αCa
αLR − kα3EICR

− dαIC ICR

dV α

IS
(t)

dtα = Ns(1− u)(1− ǫPI)(d
α
IS
ISS

+ dαIC ICS
)− cαVIS

dV α

IR
(t)

dtα = Nrψ(d
α
IS
ISR

+ dαIC ICR
) +Nsu(1− ǫPI)(d

α
IS
ISS

+ dαIC ICS
)− cαVIR

dV α

NI
(t)

dtα = ǫPINs(d
α
IS
ISS

+ dαIC ICS
)− cαVNI

dEα(t)
dtα = λαE + kα6 (ISS

+ ISR
+ ICS

+ ICR
)E − dαEE

(2)

When α = 1, then the model is the integer order counterpart. The fractional derivative of model (2) is used in the Caputo

sense, i.e.:
dαy(t)

dtα
= Ip−αy(p)(t), t > 0

where p = [α] is the value of α rounded up to the nearest integer, y(p) is the p-th derivative of y(r), Ip1 is the Riemman-

Liouville fractional integral given by:

Ip1z(t) =
1

Γ(p1)

∫ t

0

(

t− t
′

)p1−1

z(t
′

)dt
′

where Γ(p1) is the gamma function.

Reproduction numbers and local stability of the disease-free equilibrium

In this section, we compute the reproduction number of model (1), R0, and the local stability of its disease-free equi-

librium. The basic reproduction number is defined as the number of secondary infections due to a single infection in a

completely susceptible population.

We begin by considering two sub-models of model (1). Model (3) arises from model (1) by setting the variables concerning

resistant populations (LR, ISR
, ICR

and VIR ) to zero, and model (5) follows from model (1) by setting the variables

concerning sensitive populations (LS , ISS
, ICS

and VIS ) to zero.

We start by computing the reproduction number of model (3), Rs, using the next generation method [16], and the local

stability of its disease-free equilibrium.

dTα(t)
dtα = λαT + rαT

(

1−
T+ISS

+ICS
+LS

Tmax

)

− kα2 T (ISS
+ ICS

)− (1− ǫRT )k
α
1 VIST − dαTT

dLα

S
(t)

dtα = αL(1− ǫRT )k
α
1 VIST + kα2 αLT (t)(ISS

+ ICS
)− (aα + dαL)LS

dIα

SS
(t)

dtα = (1 − αC)(1− αL)(1− ǫRT )k
α
1 VIST + kα2 (1− αL)TISS

+ (1− αC)a
αLS − kα3EISS

− dαIS ISS

dIα

CS
(t)

dtα = αC(1 − αL)(1 − ǫRT )k
α
1 VIST + kα2 (1− αL)TICS

+ αCa
αLS − kα3EICS

− dαIC ICS

dV α

IS
(t)

dtα = Ns(1− u)(1− ǫPI)(d
α
IS
ISS

+ dαIC ICS
)− cαVIS

dV α

NI
(t)

dtα = ǫPINs(d
α
IS
ISS

+ dαIC ICS
)− cαVNI

dEα(t)
dtα = λαE + kα6 (ISS

+ ICS
)E − dαEE

(3)

The disease-free equilibrium of model (3) is given by:

P 1
0 = (T 0, L0

S , I
0
SS
, I0CS

, V 0
IS
, V 0

NI , E
0) =







Tmax

[

(rα−dα

T
)+

√

(rα−dα

T
)2+

4rαλα
T

Tmax

]

2rα , 0, 0, 0, 0, 0,
λα

E

dα

E






(4)

Using the notation in [16] on system (3), matrices for the new infection terms, Fs, and the other terms, Vs, are computed

to be:
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Fs =









0 kα2 αLT
0 kα2 αLT

0 αL(1 − ǫRT )k
α
1 T

0

0 kα2 (1− αL)T
0 0 (1− αC)(1− αL)(1 − ǫRT )k

α
1 T

0

0 0 kα2 (1− αL)T
0 αC(1 − αL)(1 − ǫRT )k

α
1 T

0

0 0 0 0









Vs =









aα + dαL 0 0 0
−(1− αC)a

α kα3E
0 + dαIS 0 0

−αCa
α 0 kα3E

0 + dαIC 0
0 −Ns(1− u)(1− ǫPI)d

α
IS

−Ns(1− u)(1− ǫPI)d
α
IC

cα









The associative basic reproduction number is thus:

Rs = ρ(FsV
−1
s ) = 1

2
T 0

cα(kα

3
E0+dα

IS
)(kα

3
E0+dα

IC
)(aα+dα

L
)

[[

(1− ǫPI)
2((kα3 (1 − αC)E

0 + dαIC )d
α
IS

+ kα3 d
α
IC
αCE

0)2k2α1 ((1 − αL)d
α
L + aα)2

(1− ǫRT )
2(1− u)2N2

s + 2(1− ǫPI)k
α
1

((

((1− αL)d
α
L + aα(1− αL(1 + αC)))(−1 + αC)k

α
3E

0 +
(

2(1− αL)(αC − 1
2 )d

α
L + aα((2− αL)αC + αL − 1)

)

dαIC
)

d2αIS

+
(

aαk2α3 αL(1− αC)E
02 + 2kα3 d

α
IC

(

1
2 (1− αL) d

α
L + aα

(

α2
CαL − αLαC + 1

2αL + 1
2

))

E0 +
(

2(1− αL)
(

1
2 − αC

)

dαL + aα(1 + (αL − 2)αC)
)

d2αIC

)

dαIS

+(aαkα3 αLE
0 − ((1− αL)d

α
L + aα(αCαL − 2αL + 1))dαIC )E

0αCk
α
3 d

α
IC

)

((1 − αL)d
α
L + aα)cαkα2 (1− ǫRT )(1− u)Ns + c2αk2α2

(

((1 − αL)d
α
L + aα(αCαL − αL + 1))2d2αIS

+
(

2aα
(

2(1− αL)
(

αC − 1
2

)

dαL + aα((2− αL)αC + αL − 1)
)

αLk
α
3E

0 − 2dαIC
(

(1− αL)
2d2αL + aα(1− αL)(2− αL)d

α
L + a2α(αCα

2
L(αC − 1) + 1− αL)

))

dαIS

+E02a2αα2
Lk

2α
3 + 2aααL(2(1− αL)

(

1
2 − αC

)

dαL + aα(1 + (αL − 2)αC))k
α
3 d

α
IC
E0 + d2αIC ((αL − 1)dαL + (αCαL − 1)aα)2

)]1/2

+ (1 − ǫPI)(((1 − αC)d
α
IS

+ αCd
α
IC
)kα3E

0

+dαICd
α
IS
)((1 − αL)d

α
L + aα)kα1 (1− ǫRT )(1− u)Ns + ((2(1− αL)d

α
L + aα(2− αL))k

α
3E

0 + ((1 − αL)d
α
L + aα(αCαL − αL + 1))dαIS + ((1− αL)d

α
L + (1− αCαL)a

α)dαIC )k
α
2 c

α
]

where ρ indicates the spectral radius of FV −1. By Theorem 2 in [16], we have the following lemma:

Lemma 1 If Rs < 1, then P 1
0 is locally asymptotically stable; if Rs > 1, P 1

0 is unstable.

We proceed with the computation of the reproduction number of model (5), Rr, and the local stability of its disease-free

equilibrium.

dTα(t)
dtα = λαT + rαT

(

1−
T+ISR

+ICR
+LR

Tmax

)

− kα2 T (ISR
+ ICR

)− ψkα1 VIRT − dαTT

dLα

R
(t)

dtα = αLψk
α
1 VIRT + kα2 αLT (ISR

+ ICR
)− (aα + dαL)LR

dIα

SR
(t)

dtα = (1− αC)(1− αL)ψk
α
1 VIRT + kα2 (1 − αL)TISR

+ (1− αC)a
αLR − kα3EISR

− dαISISR

dIα

CR
(t)

dtα = αC(1− αL)ψk
α
1 VIRT + kα2 (1− αL)TICR

+ αCa
αLR − kα3EICR

− dαIC ICR

dV α

IR
(t)

dtα = Nrψ(d
α
IS
ISR

+ dαIC ICR
)− cαVIR

dEα(t)
dtα = λαE + kα6 (ISR

+ ICR
)E − dαEE

(5)

The disease-free equilibrium state, P 2
0 , of model (5) is given by:

P 2
0 = (T 0, L0

R, I
0
SR
, I0CR

, V 0
IR
, E0) =

(

T 0, 0, 0, 0, 0, E0
)

(6)

Using the notation in [16] on system (5), matrices for the new infection terms, Fr, and the other terms, Vr , are computed

to be:

Fr =









0 kα2 αLT
0 kα2 αLT

0 αLψk
α
1 T

0

0 kα2 (1− αL)T
0 0 (1− αC)(1− αL)ψk

α
1 T

0

0 0 kα2 (1− αL)T
0 αC(1 − αL)ψk

α
1 T

0

0 0 0 0









Vr =









aα + dαL 0 0 0
−(1− αC)a

α kα3E
0 + dαIS 0 0

−αCa
α 0 kα3E

0 + dαIC 0
0 −Nrψd

α
IS

−Nrψd
α
IC

cα









The associative basic reproduction number is given by:
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Rr = ρ(FrV
−1
r ) = 1

2
T 0

cα(kα

3
E0+dα

IS
)(kα

3
E0+dα

IC
)(aα+dα

L
)

[[(

(dαIC + (1− αC)k
α
3E

0)2N2
r ((1− αL)d

α
L + aα)2k2α1 ψ4 + 2Nr((1 − αL)d

α
L + aα)kα2 (((2αC − 1)dαIC + (−1 + αC)k

α
3E

0)(1− αL)d
α
L

+((dαIC + E0kα3 (αC + 1))(1− αC)αL + (2αC − 1)dαIC − (1− αC)k
α
3E0)a

α)kα1 c
αψ2 + k2α2 ((1− αL)d

α
L + (1 + (−1 + αC)αL)a

α)2c2α
)

d2αIS +
(

2dαIC (d
α
IC

+ (1− αC)k
α
3E

0)N2
r ((1− αL)d

α
L + aα)2E0kα3 k

2α
1 αCψ

4

+4
(

dαIC
((

1
2 − αC

)

dαIC + 1
2k

α
3E

0
)

(1− αL)d
α
L +

((

1
2αCd

2α
IC

+ E0kα3
(

α2
C − αC + 1

2

)

dαIC + 1
2E

02k2α3 (1− αC)
)

αL +
(

1
2 − αC

)

d2αIC + 1
2E

0kα3 d
α
IC

)

aα
)

Nr((1 − αL)d
α
L + aα)kα2 k

α
1 c

αψ2

+2
(

−dαIC (1 − αL)
2d2αL + 2

((

1
2d

α
IC

+
(

αC − 1
2

)

kα3E
0
)

αL − dαIC
)

aα(1 − αL)d
α
L + ((1 − αC)(E

0kα3 + αCd
α
IC
)α2

L + (dαIC + (2αC − 1)kα3E
0)αL − dαIC )a

2α
)

k2α2 c2α
)

dαIS

+d2αICN
2
r ((1− αL)d

α
L + aα)2E02k2α3 k2α1 α2

Cψ
4 + 2dαICNr((1 − αL)d

α
L + aα)kα2 (−d

α
IC
(1− αL)d

α
L + (((2 − αC)d

α
IC

+ kα3E
0)αL − dαIC )a

α)E0kα3 k
α
1 c

ααCψ
2 +

(

d2αIC (1− αL)
2d2αL + 4dαIC

((

1
2αCd

α
IC

+ (αC

− 1
2

)

kα3E
0
)

αL − 1
2d

α
IC

)

aα(−1 + αL)d
α
L +

(

(E0kα3 + αCd
α
IC
)2α2

L − 4dαIC
(

1
2αCd

α
IC

+
(

αC − 1
2

)

kα3E
0
)

αL + d2αIC
)

a2α
)

k2α2 c2α
]1/2

+ kα3 (Nr((1− αL)d
α
L + aα)kα1 ψ

2(1− αC)d
α
IS

+ (1− αL)(NrαCd
α
IC
kα1 ψ

2

+2cαkα2 )d
α
L + (dαICψ

2αCNrk
α
1 + cαkα2 (2− αL))a

α)E0 + ((1 − αL)(Nrd
α
IC
kα1 ψ

2 + cαkα2 )d
α
L + aα(dαICψ

2Nrk
α
1 + (1− (1− αC)αL)k

α
2 c

α))dαIS + ((1 − αL)d
α
L + aα(1− αCαL))d

α
IC
kα2 c

α
]

where ρ indicates the spectral radius of FV −1. By Theorem 2 in [16], we have the following lemma:

Lemma 2 If Rr < 1, then P 2
0 is locally asymptotically stable; if Rr > 1, P 2

0 is unstable.

We now turn our attention to the full model (1). We calculate its reproduction number, R0, and the local stability of its

disease-free equilibrium.

The disease-free equilibrium, P0, of model (1) is given by:

P0 = (T 0, L0
S , L

0
R, I

0
SS
, I0SR

, I0CS
, I0CR

, V 0
IS
, V 0

IR
, V 0

NI , E
0) =

(

T 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, E0
)

(7)

Using the notation in [16] on system (1), matrices for the new infection terms, F , and the other terms, V , are computed

to be:

F =

























0 0 kα2 αLT
0 0 kα2 αLT

0 0 αL(1− ǫRT )k
α
1 T

0 0
0 0 0 kα2 αLT

0 0 kα2 αLT
0 0 αLψk

α
1 T

0

0 0 kα2 (1− αL)T
0 0 0 0 (1 − αC)(1− αL)(1− ǫRT )k

α
1 T

0 0
0 0 0 kα2 (1− αL)T

0 0 0 0 (1− αC)(1− αL)ψk
α
1 T

0

0 0 0 0 kα2 (1− αL)T
0 0 αC(1− αL)(1 − ǫRT )k

α
1 T

0 0
0 0 0 0 0 kα2 (1− αL)T

0 0 αC(1 − αL)ψk
α
1 T

0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























V =

























aα + dαL 0 0 0 0 0 0 0
0 aα + dαL 0 0 0 0 0 0

−(1− αC)a
α 0 kα3E

0 + dαIS 0 0 0 0 0
0 −(1− αC)a

α 0 kα3E
0 + dαIS 0 0 0 0

−αCa
α 0 0 0 kα3E

0 + dαIC 0 0 0
0 −αCa

α 0 0 0 kα3E
0 + dαIC 0 0

0 0 −Ns(1− u)(1− ǫPI)d
α
IS

0 −Ns(1 − u)(1− ǫPI)d
α
IC

0 cα 0
0 0 −Nsu(1− ǫPI)d

α
IS

−Nrψd
α
IS

−Nsu(1− ǫPI)d
α
IC

−Nrψd
α
IC

0 cα

























The associative basic reproduction number is computed to be:

R0 = ρ(FV −1) = max{Rs, Rr} (8)

where ρ indicates the spectral radius of FV −1. By Theorem 2 in [16], we have the following lemma:

Lemma 3 If R0 < 1, then P0 is locally asymptotically stable; if R0 > 1, P0 is unstable.

Numerical Results

In this section, we show the results of the numerical simulations of model (1). The initial conditions used are T0 = 486,

LS0
= LR0

= 0.5× 105, IS0
= IR0

= 10, ICS0
= ICR0

= 40, VIS0
= VIR0

= 100, VNI0
= 50 and E0 = 333.

In Figures 1-3, we show the dynamics of the relevant variables of system (2) for different values of αC , the fraction of

productively infected CD4+ T cells that become long-lived chronically infected cells. When αC increases, the pool of

long-lived chronically productively infected CD4+ T cells grows. The later promotes the appearance of a larger number of

resistant infectious virus, which makes the eradication of HIV extremely difficult, since the drug-resistant strains escape

treatment [10]. In the literature, it was found that the contribution of the long-lived chronically productively infected

CD4+ T cells to the growth of plasma virus is more significant when the viral load is above 50 copies/ml [19].

In Figures 4-6, we depict the dynamics of the relevant variables of system (2) for different values of αL, the fraction of

uninfected CD4+ T cells that become latently infected. When αL increases, it is observed an increase in the number of

latently infected CD4+ T cells. This means that the reservoirs of these cells are enlarged, which promotes an increase in

the amount of virus that escapes treatment [9]. Subsequently, after activation of the latent cells, new virus will be produced

and released into the blood stream. The later guarantees the persistence of HIV-1 in most patients under HAART regimens.

It is clear an increase in the number of sensitive virus for larger values of αL.
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Parameter Figs. 1-3 Figs. 4-6

λT 10 100

λE 5 5
r 0.03 0.072

Tmax 1500 1500

k1 1× 10−5 0.7× 10−5

k2 2.4× 10−4 1.1× 10−3

k3 9.9× 10−6 9.9× 10−6

k6 3.3× 10−5 3.3× 10−5

ψ 0.9 0.9
dT 0.01 0.01
dL 0.05 0.02
dIS 0.7 0.7
dIC 0.04 0.07
dE 0.015 0.015
c 23 10
αL 0.02 varied

αC varied 0.195
a 3× 10−4 2× 10−4

u 3× 10−5 3× 10−5

Ns 3000 3000
Nr 2500 2500
ǫRT 0.8 0.4
ǫPI 0.2 0.2

Table 1: Parameter values used in the simulations of model (2) based in [13, 34, 12].
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Figure 1: Dynamics of the variables of system (1) for different values of αC , the fraction of the productively infected CD4+ T cells

that become long-lived chronically infected cells. Parameter values and initial conditions are given in the text.

Conclusions

We analyzed the effect of the size of the latent reservoir and of the pool of chronically productively infected CD4+ T

cells in a model for HIV infection with drug resistance. We proved that for R0 < 1, the disease-free equilibrium is

locally asymptotically stable. When R0 > 1, the disease-free equilibrium becomes unstable. Outcomes of the numerical

simulations of the model show that the size of the latent reservoir is extremely important in the persistence of the plasma

viral load. The intrinsic stability of the resting memory CD4+ T cells is responsible for their longevity, which in turn

allows for longer shelter for wild-type HIV-1 virus and drug-resistant virus. In what concerns the pool of long-lived

productively infected CD4+ T cells, the results show that an increase in its size favours the appearance of more resistant

virus, that escape treatment, which turns the eradication of the plasma virus an impossible mission. Future work will

focus on the effect of distinct HAART regimens in the dynamics of the proposed model.
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Figure 2: Dynamics of the variables of system (1) for different values of αC , the fraction of the productively infected CD4+ T cells

that become long-lived chronically infected cells. Parameter values and initial conditions are given in the text.
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Figure 3: Dynamics of the variables of system (1) for different values of αC , the fraction of the productively infected CD4+ T cells

that become long-lived chronically infected cells. Parameter values and initial conditions are given in the text.
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Figure 4: Dynamics of the variables of model (2) for different values of αL, the fraction of uninfected CD4+ T cells that become

latently infected. Parameter values and initial conditions are given in the text.
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Figure 5: Dynamics of the variables of model (2) for different values of αL, the fraction of uninfected CD4+ T cells that become

latently infected. Parameter values and initial conditions are given in the text.
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Figure 6: Dynamics of the variables of model (2) for different values of αL, the fraction of uninfected CD4+ T cells that become

latently infected. Parameter values and initial conditions are given in the text.
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