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Analysis of a simplified MEMS oscillator
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Summary. A simplified model of a MEMS oscillator is presented and studied using perturbation methods. The model omits damping
but includes nonlinearity and dependence of light absorption on interferometric gap. Analytic results are shown to be in agreement with
results of numerical integration.

Introduction

In a JMEMS paper of 2004, the following model of a MEMS oscillator was presented [1]:

z̈ +
1

Q
(ż −DṪ ) + (1 + CT )(z −DT ) + β(Z −DT )3 = 0 and Ṫ +BT = AP (α+ γ sin2 2π(z − z0)) (1)

Here z is the displacement of a mechanical oscillator and T is its temperature due to laser illumination. In the mechanical
equation Q is the quality factor, C is the stiffness change due to temperature, D is the displacement due to temperature
and β is the coefficient of the cubic nonlinearity. In the thermal equation the quantities α and γ represent the average
and contrast of the absorption of laser power, P is the laser power, A and B represent the thermal mass and heat loss
rate. The offset, z0, models the equilibrium position of the oscillator with respect to the interference field created by the
oscillator/gap/substrate stack. This sophisticated model, which includes effects of damping, stiffness change due to heat-
ing, periodic dependence of light absorption on interferometric gap, and nonlinearity, was shown to support limit cycle
oscillations.

The present work was motivated by the question, what is the simplest version of the above MEMS oscillator which sup-
ports limit cycle oscillations?

Our candidate is the following system which omits damping and various other effects:

z̈ + z = T and Ṫ + T = z2 − zz0 (2)

For simplicity, all constants have been taken equal to unity. Numerical integration shows that this system supports a limit
cycle, see Fig.1 LEFT.

Figure 1: LEFT: Results of numerical integration of eqs.(2) for z0=0.1. Note that the variable T (t) appears to have twice the frequency
of z(t). RIGHT:Eqs.(6) using eqs.(10)-(13) for ε = 1 and z0=0.1.

Because of its relative simplicity, we hoped that this system could serve as a model for a system of coupled MEMS
oscillators. By giving up some aspects of realistic modeling, the hope was that the dynamics of coupling, such as phase
and frequency locking, could be more easily studied. As a prelude to such a study, we now present a perturbation analysis
of eqs.(2).
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Lindstedt’s Method

In order to obtain an approximate analytic solution to eqs.(2), we will use Lindstedt’s method. (See [2] for an introduction
to Lindstedt’s method.) The problem is how to scale the terms in eqs.(2). That is, where to insert the small parameter ε
on which the perturbation method is based. After some experimentation, we decided on the following scheme:

z̈ + z = T, and Ṫ + T = εz2 − ε2z z0 (3)

We begin by stretching time with

τ = ωt, where ω = 1 + k1ε+ k2ε
2 +O(ε3) (4)

This gives:
ω2z′′ + z = T, and ωT ′ + T = εz2 − ε2z z0 (5)

Next we expand as usual:

z = z1 + z2ε+ z3ε
2 +O(ε3) and T = T1 + T2ε+ T3ε

2 +O(ε3) (6)

Substituting in eq.(5) and collecting terms, we get:

z′′1 + z1 = T1 and T ′
1 + T1 = 0 (7)

z′′2 + z2 = −2k1z′′1 + T2 and T ′
2 + T2 = z21 − k1T ′

1 (8)

z′′3 + z3 = −2k1z′′2 + (−2k2 − k21)z′′1 + T3 (9)

We take the solution to eqs.(7) to be
z1 = A cos τ and T1 = 0 (10)

Substituting (10) into (8) and removing secular terms, turns out to give k1 = 0 and:

z2 = A2

(
1

2
− sin 2τ

15
− cos 2τ

30

)
and T2 = A2

(
1

2
+

sin 2τ

5
+

cos 2τ

10

)
(11)

Substituting (10),(11) into (9) and removing secular terms, turns out to give:

A =

√
10
√
z0

3
and k2 = − z0

27
(12)

Then solving eqs.(9) for z3 and T3 gives:

z3 =

√
10 (sin 3 τ − cos 3 τ) z0

3/2

1296
and T3 = −

√
10 z

3/2
0 (sin 3 τ − cos 3 τ − 4 cos τ)

162
(13)

Fig.1 RIGHT shows a plot of eqs.(6) using eqs.(10)-(13) for comparison with Fig.1 LEFT.

Conclusions

By drastically simplifying the MEMS model eqs.(1) with the system (2), we were able to obtain a closed form approximate
analytic solution. In particular we derived an expression for limit cycle amplitude as a function of parameter z0, eq.(12.1).
It can be shown that the system (2) exhibits a Hopf bifurcation in the parameter z0 at z0 = 0. Future work will involve
studying systems of coupled MEMS oscillators based on the system (2).
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