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Summary. Single-degree-of-freedom nonlinear mechanical systems under periodic excitation may possess coexisting stable periodic
solutions. Depending on the application, one of these stable periodic solutions is desired. We propose two algorithms to design an
impulsive force that will bring the system from an undesired to a desired stable periodic solution. Both algorithms have a variant that
requires only limited information about the applied force. We illustrate our method for a single-degree-of-freedom model of a rectan-
gular plate with geometric nonlinearity, which takes the form of a monostable forced Duffing equation with hardening nonlinearity.

Introduction

We consider a controlled single-degree-of-freedom (single-DOF) mechanical system with periodic excitation,

ẋ1(t) = x2(t), mẋ2(t) = F (x(t)) + Fe(t) + Fc(t). (1)

The state-vector x(t) = [x1(t), x2(t)]> has a position component x1(t) and a velocity component x2(t). The coefficient
m > 0 represents the (effective) mass, F (x(t)) represents the internal forces acting on the mass, Fe(t) = Fe(t+T ) is the
periodic excitation with T > 0 the period of Fe(t), and Fc(t) is the open loop control force. We assume that the system
(1) shows coexisting stable periodic solutions in the absence of the control force Fc(t).
In this paper, we propose two practical algorithms to design an impulsive force Fc(t) which guarantees a switch from an
undesired to a desired periodic solution. Alternative approaches can be found in [1, 2]. The proposed algorithms may be
applied in energy harvesting, in which nonlinear resonators are used to widen the bandwidth in which significant power
can be harvested. For this application, switching to a large-amplitude periodic solution may improve performance. The
algorithms may also be applied in vibration reduction problems, for a switch to a small-amplitude periodic solution.

Control algorithms

First, we study the situation where the control force Fc(t) is a Dirac delta. Consider the situation in Fig. 1, which shows
two stable periodic solutions (• dots) and one unstable periodic solution (◦ dot) of (1) in the Poincaré section at t = t0.
The stable manifold of the unstable periodic solution separates the domains of attraction of the desired and undesired
periodic solution (white and grey areas, resp.). The arrow indicates the change in velocity due to a Dirac delta in the
control force, i.e. Fc(t) = Gcδ(t − t0) with Gc the linear impulse of the control force. Note that the resulting change in
velocity Gc/m moves the solution from the undesired to the desired domain of attraction, see Fig. 1.
A real actuator can not realize a true Dirac-delta impulsive force. Therefore, the pulse is assumed to be applied during
a short time interval [t0, t0 + ∆t]. We have two algorithms for selecting the linear impulse Gc and triggering time t0
of the control force. Later, we will discuss how to choose the maximally allowed pulse duration ∆t. Intuitively, it is
clear that the exact ‘shape’ of the impulsive force is not important when ∆t is small. In both algorithms, we select a
solution y(t) = [y1(t), y2(t)]> in the (white) desired domain of attraction. In Algorithm 1, we choose t0 as the moment
at which the current state x(t) (in the undesired domain of attraction) and y(t) have the same position coordinate, i.e.
x1(t0) = y1(t0), and determine Gc from the velocity difference at that time, i.e. Gc = m(y2(t0)− x2(t0)). In Algorithm
2, we determineGc and t0 by aiming at the error e(t) := x(t)−y(t) to be zero at the end of the pulse (i.e. e(t0+∆t) = 0).

Single-DOF plate model with geometric nonlinearity

We illustrate the algorithms for a single-DOF model of a rectangular plate. The edges of the plate are clamped and have a
harmonic acceleration in the out-of-plane direction ẅe(t) = w̄e cos(2πfet). The large-amplitude vibrations of plates are
described by the Föppl-Von Karman equations. In a Cartesian coordinate system (x, y, z), these equations are formulated
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Figure 1: Domains of attraction in the Poincaré section
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Figure 2: Amplitude-frequency diagram
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Figure 3: Application of Algorithm 1 (∆t = 0.05T )
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Figure 4: Application of Algorithm 2 (∆t = 0.13T )

in terms of the out-of-plane displacement field w(x, y, t), and two in-plane displacement fields. We use a single-mode
approximation w(x, y, t) = q(t)W (x, y), where q(t) is the generalized coordinate and W (x, y) approximates the lowest
out-of-plane eigenmode. The in-plane displacement fields can be expressed in terms of q(t) by solving the quasi-static in-
plane equations (neglecting in-plane inertia). This results in a monostable Duffing equation with a hardening nonlinearity.
For a 300× 200× 1 mm3 aluminum plate with w̄e = 50 m/s2, we find the amplitude-frequency plot in Fig. 2 (amplitude
= (max(q)−min(q))/2). At fe = 240 Hz, we write the equation for q(t) to its dimensionless form and find

ẋ1(t) = x2(t), ẋ2(t) = −2ζx2(t)− x1(t)− µx31(t) + cos(ωt) + Fc(t), (2)

with ζ = 0.01, µ = 0.003, and ω = 1.3906. Note that (2) is of the form (1).
Figs. 3 and 4 show Poincaré sections at t = t0 + ∆t, with the desired (in white) and undesired (in grey) domains of
attraction. The arrows, however, indicate the trajectories of x(t) and y(t) for t ∈ [t0, t0 + ∆t] resulting from Algorithm
1 (Fig. 3) and Algorithm 2 (Fig. 4) from the section “Control algorithms”. The hatched elliptic disks lying in the desired
domain of attraction will be discussed below.

Determining the maximally allowed pulse duration ∆t

In the section “Control algorithms”, we introduced two algorithms to determine the triggering time t0 and the linear
impulse of the control force Gc. We now discuss how to choose ∆t. A maximally allowed pulse duration ∆t can be
determined for both algorithms using Figs. 3 and 4: the hatched elliptic disks in these figures are centered at y(t0 + ∆t)
and are guaranteed to contain x(t0 + ∆t). Thus, when the hatched elliptic disk is completely contained in the (white)
desired domain of attraction, the applied impulsive force will result in the desired steady-state behavior. The maximally
allowed pulse duration is found when the hatched elliptic disk touches the border of the desired domain of attraction. The
shape of the pulse was used to construct the elliptic disks in Fig. 3 (where ∆t = 0.05T ) and Fig. 4 (where ∆t = 0.13T ).
If we only use the information that the linear impulse of Fc(t) is Gc and that Fc(t) does not change sign, we find smaller
allowed pulse durations: ∆t = 0.027T for Algorithm 1 and ∆t = 0.065T for Algorithm 2.
The elliptic disks are constructed based on an ‘expected’ trajectory C(t) = [C1(t), C2(t)]> for the error e(t) := x(t) −
y(t). The expected trajectory C(t) is based on the assumption that Fc(t) will be dominant over F (x(t)) and Fe(t) in
(1) for t ∈ [t0, t0 + ∆t], so that F (x(t)) and Fe(t) can be neglected. We then consider the error introduced by this
assumption z(t) = [z1(t), z2(t)]> := e(t)−C(t). A natural measure for the magnitude of z(t) is the Lyapunov function
Z(t) := mz22(t) + kz21(t). After finding the dynamics of Z(t), we are able to find a bound on Z(t0 + ∆t) by the
Bihari-Lasalle Lemma. This bound gives then the size of the elliptic disk. Details can be found in [3].
Finally, we note that in the implementation of the algorithms an error may be introduced. For example, in Algorithm 1
(introduced at the end of section “Control algorithms”) it might not hold that x1(t0) = y1(t0) at the moment t = t0 at
which the impulsive force is applied, and a slight error ε1 = y1(t0)−x1(t0) is made. These type of implementation errors
can be incorporated in the construction of the elliptic disks.

Conclusions

We have proposed two algorithms to design an impulsive force to switch from an undesired to a desired periodic solution
and demonstrated them for a single-DOF model of a rectangular plate with geometric nonlinearity.
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