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Fractional order convergence of time-discretizations for semilinear PDEs
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Summary. A discretization of an ODE is of order p if the trajectory error is of magnitude hp, where h is the time step size. When we
discretize a PDE in space first we obtain an ODE on a high dimensional space. Discretizing this ODE in time by an order p numerical
method does however in general NOT give an order p accurate time discretization. Indeed when the spatial accuracy is very high
the trajectory error of the full time-space discretization is Chp where C is very big. In this case convergence is lost UNLESS the
continuous solution has some spatial regularity. In this talk we show how to obtain fractional order convergence in the case where the
continuous solution has some regularity, but not enough to obtain full order convergence.

Discretization error for ODEs

Let us first consider an ODE ẏ = f(y) where y : Rn → Rn is smooth. Let y(t) be its exact solution and y(0) = y0. We
discretize this ODE by an order p method y1 = Ψh(y0). This means that the local error ‖y(h)− y1‖ satisfies

‖y(h)− y1‖ = O(hp+1). (1)

For fixed T > 0 if t = nh ≤ T , then the global trajectory error En(h) = ‖y(t) − yn‖ satisfies En(h) = O(hp) where
yn = (Ψh)n(y0) is the nth iterate of Ψh. To obtain the error bound (1) we Taylor expand both y1 = Ψh(y0) and y(h)
in h. If the first p derivatives of Ψh and y(h) coincide then Ψh is a method of order p. As an example we consider the
implicit midpoint rule (IMPR) which has order p = 2 and is given by

y1 = y0 + hf(
1

2
(y0 + y1)), (2)

see eg. [2].

The semilinear wave equation

We now consider semilinear PDEs of the form

Ut = AU +B(U) = F (U) (3)

on some Hilbert space Y where A is a skew-self adjoint operator, i.e. A∗ = −A and B : Y` → Y` is smooth for any
` ≥ 0 where Y` = D(A`). An example is the semilinear wave equation with periodic boundary conditions

utt = uxx − V ′(u), u(0) = u(2π), (4)

where V (·) : R→ R is a smooth potential. This equation is Hamiltonian with energy

H(u, ut) =

∫ 2π

0

(
1

2
(u2x + u2t ) + V (u)

)
dx.

We write (4) in the form (3) by setting U = (u, v), where v = ut, and

A = Q0Ã, Ã =

(
0 1
∂2x 0

)
, B(U) =

(
0

−V ′(u)

)
+ P0ÃU.

Here P0 is the spectral projector of Ã to the eigenvalue 0 and Q0 = 1−P0. Note that Ã has spectrum spec(Ã) = {im,m ∈
Z}, with eigenvectors ( eimx

im , eimx) form 6= 0 and with eigenvector (1, 0) and generalized eigenvector (0, 1) whenm = 0.
Hence the solution operator of the linear system (3) (where B ≡ 0) given by etA is an isometry (‖etA‖Y = 1) with finite
energy solutions if we set Y = H1×L2. Here we define the Sobolev spaceH`, ` ≥ 0, as the space of functions for which
the inner product

〈u, v〉H` = û0v̂0 +
∑
m∈Z

m2`ûmv̂m (5)

is finite. We denote by ûm, v̂m the Fourier coefficients of u(x) = 1√
2

∑
m∈Z ûmeimx and v(x) = 1√

2

∑
m∈Z v̂meimx.

Moreover L2, corresponding to ` = 0 in (5), is the space of square integrable functions.
Using a variation of constant formula it can then be shown that there is a unique solution U(t) of (3) in a mild sense [3].
For this solution to be a classical solution, i.e. a solution which satisfies equation (3), we need that AU(t) ∈ Y , which
means U(t) ∈ D(A) = Y1. In the case of the semilinear wave equation (4) the operator A acts like im on the mth Fourier
mode, so, in view of (5), we need U = (u, v) ∈ Y1 = H2 ×H1. If the initial value U(0) = U0 of the solution U(t) of
the evolution equation (3) lies in Y`, ` ∈ N, then A`U(t) ∈ Y and U(t) is ` times differentiable in t in the Y norm.
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Implicit midpoint time discretization of semlinear wave equation

Applying the implicit midpoint rule (2) to the evolution equation (3) and rearranging gives

U1 = Ψh(U0) = (1− h

2
A)(1− h

2
A)−1U0 + h(1− h

2
A)−1B(

1

2
(U0 + U1))

which can be solved by the contraction mapping theorem. If U0 ∈ Y` with ` ≥ 3 then the derivatives ∂jtU(t) ∈ Y of the
solution U(t) of (3) exist for j = 1, 2, 3, and similarly ∂jhΨh(U0) ∈ Y exists for j = 0, 1, 2, 3. In this case the local error
‖U(h)− U1‖Y is well defined and of order O(h3) and the global error is of order O(h2) as in the case of ODEs.

Main result

Here we investigate the case when the initial value U(0) = U0 lies in Y` with ` < p + 1, i.e. ` < 3 for our example,
the implicit midpoint rule (2) . We show that for such initial data U0 the global error ‖U(t) − Un‖Y where t = nh and
Un = (Ψh)n(U0), satisfies

En(h) = ‖U(tn)− Un‖Y = ch
`p

p+1 , where tn = nh ≤ T, (6)

with the constant c depending on T > 0. For linear evolution equations such a result was proved in [1]. For the IMPR (2)
we get an order of convergence q(`) = 2`/3. Let us discretize (4) in space as well, say by finite differences, using that

uxx(x) =
u(x+ k)− 2u(x) + u(x− k)

k2
+O(k3).

The global space time discretization error then in general satisfies

‖U(tn)− Unk ‖ = O(‖Ak‖3)h3, where xm = mk ∈ [0, 2π].

Here Unk = {Unk (xm)}, with Unk (xm) the space time discretization of U(t) at (t, x) = (tn, xm). Moreover Ak, the
space discretization of A, satisfies ‖Ak‖ = O(1/k) (in the norm descending from Y). Hence when spatial and temporal
stepsizes k and h are of the same order then in general the discretization error is O(1), so there is no convergence. This
corresponds to the case ` = 0 in (6). But if U0 ∈ Y`, ` > 0, then we numerically observe an order of convergence q(`) as
shown in Figure 1 (solid line), which is in good agreement with the theoretical result q(`) = p`/(p+ 1) (dashed line).
To produce the figure we have chosen V ′(u) = u− 4u2 for ` = j/2, j = 0, . . . , 6, on the interval t ∈ [0, 0.5], and use a
fine spatial mesh (with N = 1000 grid points on [0, 2π]). As initial values we choose U0 = (u0, v0) ∈ Y` where

u0(x) =

N=1∑
k=0

cu
k`+1/2+ε

(cos kx+ sin kx), v0(x) =

N=1∑
k=0

cv
k`+1/2+ε

(cos kx+ sin kx).

Here cu and cv are such that ‖U0‖Y`
= 1, with U0 = (u0, v0), and ε = 10−8. We integrate the semilinear wave equation

with the above initial data for the time steps h = 0.1, 0.095, 0.09, . . . , 0.05, when ` > 0. To estimate the trajectory error,
we compare the numerical solution to a solution calculated using a smaller time step, h̃ = 10−3 for ` > 0 and h̃ = 10−4

for ` = 0. From the assumption En(h) = chq we get logEn(h) = log c + q log h. Fitting a line to those data, we take
the gradient of the line as our estimated order of convergence q(`) of the trajectory error.
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Figure 1: Plot of a numerical estimate of q(`) against ` for the implicit midpoint rule applied to the semilinear wave equation, with the
prediction of (6) for comparison. Courtesy of [4].
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