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Fig. 1 Block diagram of the vibration control 

system 

 

 

 
 

Fig. 2 Nyquist diagram 
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Summary. This paper proposes a fractional-order controller design method for the vibration suppression of a flexible structure. First, 

the process of designing a controller to meet the specifications of the Nyquist diagram is explained. An improvement to the design 

method that allows the attenuation level of a resonant peak to be treated as a specification is then discussed. Numerical simulations 

performed in this study demonstrate that the proposed fractional-order controller is more robust against spillover instability than 

the integer-order controller. 

 
Introduction 

 

In aircrafts and space structures, there are many structural components that can be considered as flexible beams. 

Vibrations can be harmful to the performance of such structures. In this study, fractional calculus was applied to the 

vibration suppression of a flexible beam, and the controller parameters were designed. The tuning of the controller 

parameters has been performed in some previous studies using a trial-and-error approach [1] [2]. However, this tuning 

process is time-consuming, and there is a risk of destabilization. As an alternative tuning method, a function that 

implements an optimization algorithm (e.g., the “fmincon” function in MATLAB) has been used in some studies [3] 

[4]. However, this complicated algorithm can place a heavy load on the computer. Therefore, in this study, a 

fractional-order controller was designed as an alternative non-trial-and-error approach that is simpler than previously 

implemented optimization algorithms. 
 

Controller design based on the Nyquist diagram 
 

The vibration control system shown in Fig. 1 was considered in this study. In this figure, y is the displacement of the 

vibratory system, fd is the disturbance that causes the vibration, and fc is the control force. Moreover,       is the 

transfer function from the disturbance to the displacement,       is the transfer function from the control force to the 

displacement, and      describes the controller. The controller function is given as 

        ,                                                                        (1) 

where K is the feedback gain,         is a fractional order, and    is a fractional-order derivative (FOD). The 

loop transfer function of the control system can be described as 

                 .                                                               (2) 

When the vibratory system can be expressed as a one-degree-of-

freedom system and the damping is small, the plot of eq. (2) in the 

complex plane forms a circle, as shown in Fig. 2. This is the Nyquist 

diagram or Nyquist circle. Point B on the circle, which is the point on 

the circle that is farthest from the origin of the complex plane, gives 

the loop transfer function value        at the resonant frequency 

   of the vibratory system. The length r of the line between point B 

and the origin and the angle        ⁄   between this line and the 

imaginary axis are defined as  

  |      |                                (3) 
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From eqs. (3) and (4), the following approximations can be derived 

because    (       )     ⁄  when the damping of the vibratory 

system is small: 
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Next, the peak suppression level Ap is introduced as a new 

specification that can be used instead of r. The closed-loop response 
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at the resonant frequency    can be described as 

| (   )|  |
  (   )

   (   )
|.                          (7) 

Based on this equation, the peak suppression level Ap can be given in 

decibel notation as 

   |   (   )|  .                          (8) 

Moreover,   is defined as   |        |    
  

  , and the 

relationship between   and r can be obtained using the law of cosines 

as 
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Finally, eq. (9) yields 

        √      ⁄       .               (10) 

 

Numerical simulations of the control of a flexible 

cantilever 
 

The controller design method was then applied to the vibration control 

of a flexible cantilever beam. The sensor and the actuator are 

considered to be non-collocated. The FOD controller was compared 

with the integer-order derivative (IOD) controller in which     in 

eq. (1). Furthermore, the MATLAB function “ora_foc” [5] was utilized 

to realize    in the FOD controller. The transfer function of the 

cantilever was derived using the modal expansion method, and the 

vibration modes up to 10th mode were taken into account in the 

mathematical model of the cantilever.  

In the controller design, the suppression of the first vibration mode was 

considered. The control specifications were set to          and 

     , respectively. Using the proposed method, the parameters of 

the FOD controller were obtained as        and       , and the 

feedback gain of the IOD controller was obtained as       .  

First, the frequency responses were obtained, as shown in Fig. 3. The 

results demonstrate that the criterion          is satisfied for the 

FOD control. The Nyquist diagrams for the two types of control are 

shown in Fig. 4. As shown in Fig. 4(a), the angles of the resonant point 

to the imaginary axis are approximately     and 0° in the case of the 

FOD and IOD control, respectively. In Fig. 4(b), the Nyquist circles 

corresponding to some higher vibration modes for the FOD and IOD 

control are shown. This figure illustrates that the FOD control 

maintains stability, whereas the IOD control becomes unstable, as 

indicated by the fact that the Nyquist circles of the higher vibration 

modes surround the point [     ]. The results shown in Fig. 4(b) demonstrate that the IOD control leads to spillover 

instability and the FOD control avoids this instability. Therefore, from the viewpoint of robustness against spillover 

instability, FOD control is superior to IOD control. Spillover instability can never be ignored when considering the 

vibration control of flexible structures. Accordingly, FOD control is more suitable than IOD control for the vibration 

control of flexible structures. In the future, FOD control should be compared with robust control such as H∞ control.  
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Fig. 3 Frequency response for FOD control 

 

 
(a) Full Nyquist plots 

 

 
(b) Magnification in the vicinity of the 

origin 
 

Fig. 4 Nyquist plots for IOD and FOD 

control 

 


