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Minimum Damping Needed for Vanishing an Unstable Pocket of a Hill Equation
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Summary. For the stability chart of a Hill equation we introduce the definition of Maximum Energy Lines (MEL), these lines are
composed of points where the unstable solutions of the differential equation reaches its maximum growth. Then we use the definition
of MEL in order to give a new characterization of the coexistence points and to find the minimum damping needed to vanish an unstable
pocket, if they exist. Analytical and numerical results, for Meissner equation are presented.

Introduction

An homogeneous, linear, second-order differential equations with real, periodic coefficients of the form ẍ+(α+ βq (t))x =
0 with q (t+ T ) = q (t) is called Hill’s equation [3]. This kind of equations describes a vast number of periodic systems,
from the movement of celestial bodies to the L-C electric circuits, maybe the most known and didactic example is the
swinging of a mass attached to a periodic moving support, where the very unusual behaviour of the systems described by
a Hill equation can be appreciated. Namely, if a force varying periodically acts on a mass in such manner that the force
tends to move the mass back into its equilibrium point, one may expect that the mass stays within a neighbourhood of
its equilibrium. Once the force is strong enough to achieve this effect, one would expect that a stronger force be more
efficient, but, this may not be the case, the mass may oscillate wider and wider. Then, the stability of the solutions of a
periodic differential equation may change with the slight change of parameters such as the amplitude and frequency of
the periodic excitation.
The stability of solutions of a Hill’s equation could be represented as the so called Ince-Strutt diagram, which consists on
stable and unstable regions divided by transition curves in the plane of parameters α − β. If T = 2π then, each unstable
zone rises at the point

(
n2

4 , 0
)

and they are called as the integer number which define where they rise. In Fig. 1a), the
unstable regions are numbered as described above. Transition curves are characterized by having at least one T -periodic
or 2T - periodic solution [4]. Unstable regions are also called Arnold tongues. For a comprehensive survey on the subject
see [7].
It is well known that transition curves of a Hill’s equation having different period do not intersect each other at any point
[3]. But, if two lines, with the same period, intersect each other then, there are two linear independent solutions of the
Hill’s equation with the same period and we shall call this "coexistence". For a detailed account of coexistence in Hill’s
equation see [8] and [9]. Along this paper, we refer as instability pockets to the unstable regions between two coexistence
points of the same Arnold tongue.
The aim of this article is to give a method to vanish any instability pocket of any Hill equation by adding a dissipative
term δẋ to the periodic differential equation and to give the minimum amount of dissipation δ needed to achieve this task.
In section 2 we give some basic concepts about the Floquet theory, a characterization of the solutions of a linear periodic
system and an useful theorem which relates Iso-µ curves with transition curves of a related damped Hill’s equation, that
is, the existing relationship between curves, in the α− β plane, where unstable solutions grow with the same velocity and
the curves where there is at least one periodic solution of a related damped Hill’s equation. In section 3 we introduce the
definition of maximum energy lines (MELs) and the minimum damping needed to vanish any unstable pocket is obtained.
In section 4 we found an analytical approximation of the MELs of Meissner equation and verify the main theorem given
in section 3. Finally, some concluding remarks are given in section 5.

Preliminaries

In this section we collect some basic properties of periodic differential equations and present a theorem on the relation
between the growth of the solutions and the solutions of a damped periodic system. The theorem proofs are omitted, but,
we indicate where they can be found.
Consider the homogeneous linear periodic system

ẋ (t) = A (t)x (t) (1)

where A (t+ T ) = A (t) and A (t) ∈ Rn×n. A second order differential equation of the form

ÿ + (α+ βq (t)) y = 0 (2)

with q (t+ T ) = q (t), and y, α, β ∈ R is an example of a dynamic system which can be represented by (1). Equation
(2) is known as Hill’s equation. Next theorem, due to Floquet, states that the solutions of (1) may be factorized by three
matrices, two periodic and one exponential, as follows

Theorem 1 The state transition matrix Φ (t, t0) ∈ Rn×n of (1) has the form

Φ (t, t0) = P−1 (t) eB(t−t0)P (t0)

where P (t), B are n× n matrices, P (t+ T ) = P (t) ∀t, B is constant, not necessarily real.
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Proof 2 The proof of Theorem 1 can be found in [10]. �

Remark 3 Notice that if we set t = t0 then, Φ (t0, t0) = In. The importance of the state transition matrix Φ (t, t0) is that
it maps any initial state x (t0) to a unique final state x (t), namely, x (t) = Φ (t, t0)x (t0). Without loss of generality, if
we set t0 = 0 then, by Theorem 1, the state transition matrix can be written as

Φ (t, 0) = P−1 (t) eBt

The monodromy matrix of (1) is a non singular matrix M associated with the matrix Φ (t, t0) through the relation
Φ (t+ T, t0) = Φ (t, t0)M [11], in other words, the monodromy matrix is equal to the state transition matrix valuated at
one period T ,

M = Φ (t0 + T, t0) (3)

The eigenvalues µi, i = 1, . . . , n, of the matrix M are called characteristic multipliers and any ρi such that µi = eρiT are
called characteristic exponents. The exponents ρi could always be chosen as the eigenvalues of B where B is any matrix
so that M = eBT [10].
Matrix M plays a fundamental role for the stability of the system (1). Let t ≥ 0, if we write t as: t = kT + τ , τ ∈ [0, τ ]
and t0 = 0, applying properties of the state transition matrix Φ (t, t0) [11], one can write:

x (t) = Φ (t, 0)x0

= Φ (kT + τ, 0)x0

= Φ (kT + τ, kT ) Φ (kT, (k − 1)T ) . . .Φ (T, 0)x0

= Φ (τ, 0)Mkx0 (4)

from latter equation we can notice that since, x0 and Φ (τ, 0) are bounded, the stability of the solution of (1) depends
on the matrix M and therefore on the characteristic multipliers µi. Next theorem gives the conditions for stability of the
solutions of (1)

Theorem 4 Let µi be the characteristic multipliers of (1), then:
a) The solutions of (1) are asymptotically stable if and only if all |µi| < 1.
b) The solutions of (1) are stable if and only if all |µi| ≤ 1, and if any µi has modulo one, it must be a simple root of the
minimal polynomial of M .
c) The solutions of (1) are unstable if and only if there is a µi such that |µi| > 1 or if all |µi| 6 1 and there is one
µj : |µj | = 1 and µj is a multiple root of the minimal polynomial of M .

Theorem 1 is known as the Floquet theorem. Theorem 4 allows us to analyse the stability of (1) by knowing the charac-
teristic multipliers µi, that is, by knowing the solution Φ (t, 0) at t = T .
Let y1 (t) and y2 (t) be two linearly independent solutions of the Hill equation (2), fulfilling the initial conditions

y1 (0) = 1 ẏ1 (0) = 0

y2 (0) = 0 ẏ2 (0) = 1

and define the function
∆ (α, β) , y1 (T ) + ẏ2 (T ) (5)

where T is the period of q (t) in (2), then, the characteristic multipliers of equation (2) are defined by the characteristic
polynomial

det (µI2 −M) = µ2 −∆ (α, β)µ+ 1 = 0

the linear term is equal 1 because of Liouville Theorem [1]. The function ∆ (α, β) is known as the discriminant of Hill
equation. Solving the characteristic polynomial for µ we get

µ1,2 =
∆ (α, β)±

√
∆ (α, β)

2 − 4

2

so, the characteristic multipliers µi depends on ∆ (α, β) and therefore on the current value of the parameters α and β.
Following the Theorem 4 one can say that the solutions of the Hill equation (2) are : a) Stable, If |∆ (α, β)| < 2, since,
the multipliers are complex conjugated numbers and |µi| = 1; b) Unstable, if |∆ (α, β)| > 2, since, both multipliers are
real, one of them is |µ| < 1 and the other is |µ| > 1; c) There exist at least one periodic solution, if |∆ (α, β)| = 2, since
both multipliers are |µ| = 1, and if the Monodromy matrix is similar to a diagonal matrix, then this point is stable and
corresponds to a coexistence point.
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From the above mentioned and Theorem 4 one can infer that the stability of the solutions of the Hill equation (2) depend on
the parameters α and β. Moreover, the plane of parameters α− β is splited into stable and unstable zones, the boundaries
between the stable and unstable areas are called transition curves1, see Fig. 1a).
It is known that the function ∆ (α, β) is an entire function and its order of growth is 1

2 [2], this implies that the functions
∆ (α, β) + 2 and ∆ (α, β) − 2 have infinitely many zeros [3]. The following theorem due to Haupt gives us the relation
between the function ∆ (α, β) = ±2 and the stable and unstable zones, of a Hill’s equation, in the plane of parameters
α− β.

Theorem 5 To every differential equation (2) with β fixed, there belong two monotonically increasing infinite sequences
of real numbers

α0 < α1 ≤ α2 < α3 ≤ . . . (6)
α∗1 < α∗2 ≤ α∗3 < α∗4 ≤ . . . (7)

(6) is solution of ∆ (α, β)− 2 = 0 and (7) is solution of ∆ (α, β) + 2 = 0. The αn and α∗n satisfy the inequalities

α0 < α∗1 ≤ α∗2 < α1 ≤ α2 < α∗3 ≤ . . .

The solution of (2) is stable if α lies in the intervals

(α0, α
∗
1) , (α∗2, α1) , (α2, α

∗
3) , (α∗4, α3) , . . .

and the solution is unstable if α lies in the intervals

(−∞, α0) , (α∗1, α
∗
2) , (α1, α2) , (α∗3, α

∗
4) , . . . (8)

Proof 6 The proof of Theorem 5 can be found in [3]. �

Each unstable zone, in the α − β plane, is identified by an integer number n = 0, 1, 2, . . ., the assignment of this integer
number depends on the position the unstable zone is; the zeroth unstable one is the one more to the left on the α−β plane,
the next one to the right is the first, and so on, see Fig. 1a).

Iso-µ curves
Remember that the eigenvalues of the Monodromy matrix, are denoted as µi and called multipliers, then for some |µi| > 1,
the Iso-µ curves are lines inside the regions of instability. In particular the Iso-µ curves of a Hill’s equation are defined by
values of α and β for which the solutions have the same growth rate2, see [5], [12]. As a consequence of Floquet theorem
the solution of any periodic differential equation could be written as

x (t) = eρitp (t)

where p (t+ T ) = p (t) [10], so the solution will be unstable if the real part of the characteristic exponent ρi is a positive
number, so there exists a relationship between the growth rate and the characteristic exponents ρi.
The growth rate is proportional to the real part of the characteristic exponents ρi. The condition for the solution of (1)
grows exponentially is |µi| > 1 or equivalently Re(ρi) > 0. Then, there also exists a relationship between the growth
rate and the characteristic multiplier µi. We will define the maximum growth rate as

γ = max {|µi| : µi ∈ σ(M)} > 1

where σ (M) = {µ1, µ2, . . . , µn}.
Therefore the Iso-µ curves are lines in the unstable zones, on the α−β plane, where the solution of a Hill’s equation have
the same growth rate γ. Fig. 1b) shows some Iso-µ curves of the Meissner equation, ẍ + (α+ βsign (cos (t)))x = 0,
for different values of γ.
The following theorem gives us the existing relation between the Iso-µ curves and the transition curves of a different but
related damped Hill’s equation [6].

Theorem 7 An Iso-µ curve of a Hill’s equation

ÿ + (α+ βq (t)) y = 0 (9)

where α, β ∈ R, y ∈ R and q(t+T ) = q(t), with some growth rate γ, is equal to the transition curve of a related damped
Hill’s equation

ẍ+ δẋ+ (α∗ + βq (t))x = 0 (10)

1Transition curves are composed by points, in the α− β plane, for which there is at least one periodic solution of the associated periodic differential
equation, that is for α, β values such that |∆ (α, β)| = ±2.

2With growth rate we mean how fast a solution goes to infinity.
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Figure 1: a) Stable zones in white, unstable zones in gray and transition curves in black continuous lines for the equation ẍ + (α +
β(cos(t) + cos(2t)))x = 0. b) Iso-µ curves for different values of γ: γ = 1.3691 in red, γ = 2.0536 in green and γ = 2.7382 in
blue. Transition curves in black. For Meissner equation ẍ+ (α+ βsign(cos(t)))x = 0

where α∗, δ ∈ R, x ∈ R, if and only if
γ = e

1
2 δT (11)

and
α = α∗ − 1

4
δ2

where γ = max [|σ (Φy(T, 0))|].

Proof 8 The proof of Theorem 7 can be found in [6].�

The interesting part of this Theorem is that it establishes a relation between the original Hill’s equation (9) and some
related one (10) in the sense that the transition curves of (10) coincide with the Iso-µ curves of (9); moreover it gives us
an easy way to calculate the Iso-µ curves of (9).

MEL and the minimum damping needed to vanish an unstable pocket

Theorem 5 implies that, for each fixed β, the transition curves of a Hill’s equation are defined by the zeros of the functions
∆ (α, β)−2 and ∆ (α, β)+2. From a theorem due to Laguerre [13] which says that if f (z) is an entire function, real for
real z, of growth order less than 2, with real zeros, then the zeros of d

dz
f (z) are also all real, and are separated from each

other by the zeros of f (z). One can say that, for a fixed β, only one zero of ∂
∂α∆ (α, β) will be inside of each unstable

interval (8). And we came up to the following definitions.

Definition 9 For β fixed, the maximum energy point φn (β), in each unstable interval (8), is the value of α for which the
modulo of the maximum characteristic multiplier reach a maximum value, and depends on the current value of β. The sub
index n refers to the appearance order, being the first the smallest one.

Definition 10 The maximum energy line (MEL) is the union of all the maximum energy points φn (β) with the same sub
index n, that is

MELn = ∪∀βφn (β)

we will represent the MEL of the nth unstable zone as MELn.

Remark 11 In the particular case of (2) the maximum energy points φn (β) are defined as the (α, β) values where
∂
∂α∆ (α, β) = 0 and β fixed. And the MELs are continuous lines depending on β and the number of unstable region
where the line lays. Fig. 2 shows the MELs for the Meissner equation.

As the MELn lays inside the nth unstable regions, then the MELn rises from the same α the unstable region rises, i. e.
if T = 2π then, φn (0) = n2

4 . And, if the nth unstable region vanish at some β, i. e. there exists a coexistence point in the
unstable region, then the MELn goes through the coexistence point. Next theorem gives us an analytic characterization
of the coexistence points.

Theorem 12 An (α0, β0) ∈MEL2n is a T -periodic coexistence point if and only if ∆(α0, β0) = 2. And, an (α0, β0) ∈
MEL2n+1 is a 2T -periodic coexistence point if and only if ∆(α0, β0) = −2.
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Remark 13 One can prove that each MELn fulfil the following properties:
1. The MELn rises from the same α as the nth Arnold tongue (unstable region) [3], i.e. if T = 2π then, φn (0) = n2

4 .
2. The MELn goes through the coexistence points of the nth Arnold tongue, if they exist.
3. If there exist m coexistence points along the MELn then ∂

∂β∆ (φn (β) , β) = 0 for m different values of β; i.e. the
discriminant along the MELn will have m critical values.
4. If there do not exist coexistence points along theMELn then |∆ (φn (β) , β)| → ∞ as β →∞, and ∆ (φn (0) , 0) = 2.

Minimum damping needed to vanish an unstable pocket
From Fig. 1b) one can notice that the maximum energy of an unstable pocket is located near its center, and the region
with less energy are near the coexistence points and transition curves. We know that |∆ (α, β)| = 2 if and only if α and
β are over the transition curves. So if a MEL goes through a coexistence point, then, |∆ (φn (β) , β)| = 2 for more than
one value β, which means that ∆ (φn (β) , β) will has some critical values. The number of this critical values will depend
only on the number of coexistence points. The following theorem gives us the condition to vanish an unstable pocket3.

Lemma 14 Let
(
ᾱ, β̄

)
be the point of maximum energy inside an unstable pocket of a Hill equation and ψ , ∆

(
ᾱ, β̄

)
.

The unstable pocket will vanish if a damping term δẏ is added to (2) and the minimum amount of damping δ needed to
vanishing it is

δ =
2

T
ln (µ) (12)

where T is the minimal period of q (t) in (2) and µ is the maxim modulo of the characteristic multipliers at
(
ᾱ, β̄

)
, i. e.

µ = max

{∣∣∣∣ψ±√ψ2−4
2

∣∣∣∣}.

Proof 15 Let ∆ (α, β) be the discriminant of a Hill’s equation (2). In order to obtain the maximum energy points and the
MELs, one has to calculate the partial derivative with respect to α and equating to zero.

∂

∂α
∆ (α, β) = 0 (13)

Suppose that φn (β) represents the solution of (13), i.e. the maximum energy points, of the n unstable region having at
least one coexistence point. Substituting φn (β) instead of α in ∆ (α, β) we get the values of the discriminant over the
MELn.
Defining β̄ as the value of β where |∆ (φn (β) , β)| has a critical point, and defining ᾱ = φn

(
β̄
)

we get the point where
the maximum energy of the unstable pocket lays and the value of the discriminant in this point is

∆
(
ᾱ, β̄

)
= ψ.

Adding a damping term δẏ to (2) and from Theorem 3, one can obtain the minimum δ needed to vanish the whole pocket

δ =
2

T
ln (µ)

where µ = max {|µ1| , |µ2|} and the characteristic multipliers of (2) in
(
ᾱ, β̄

)
are

µ1 =
ψ +

√
ψ2 − 4

2

µ2 =
ψ −

√
ψ2 − 4

2

�

Remark 16 Notice that by definition
(
ᾱ, β̄

)
lays on a corresponding MELn.

Example

As is well known, solutions of periodic differential equation

ẍ+ (α+ βq (t))x = 0

can not be obtain in an analytical manner but for a few examples such as Meissner equation where q (t) is a piecewise
constant periodic function, Lamé equation where q (t) is an Jacobi elliptic function or when q (t) is a piecewise linear

3We call unstable pockets the zones between two coexistence points belonging to the same unstable areas. An Arnold tongue with m coexistence
points have the same number of unstable pockets.
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function, see [3] or [5].In this section we obtain an analytical approximation of theMELn, n = 1, 2, . . . ., of the Meissner
equation, and then, we use the lemma 14 in order to vanish an unstable pocket.
Consider the Meissner equation

ÿ + (α+ βsign (sin (t))) y = 0 (14)

with α, β ∈ R+ ∪ {0}. Defining x1 = y, x2 = ẏ and x =
[
x1 x2

]′
, (14) could be rewritten as

ẋ =

[
0 1

− (α+ βsign (sin (t))) 0

]
x (15)

for sake of simplicity, we are only interested in the solution of (15) for α > β, the monodromy matrixM for this parameter
values is [14]

M =

[
cos (πw2) 1

w2
sin (πw2)

−w2 sin (πw2) cos (πw2)

]
·
[

cos (πw1) 1
w1

sin (πw1)

−w1 sin (πw1) cos (πw1)

]
where w1 =

√
α+ β and w2 =

√
α− β. We know that the characteristic multipliers of M depends on its trace ∆ (α, β),

i. e.

µ1,2 =
∆ (α, β)±

√
∆ (α, β)

2 − 4

2

and ∆ (α, β) is monotonic in the intervals α ∈ [ξi, ξi+1] where ξi represent the zeros of ∂
∂α∆ (α, β), so

∆ (α, β) = 2 cos (πw1) cos (πw2)

−
(
w1

w2
+
w2

w1

)
sin (πw1) sin (πw2)

=
(w1 + w2)

2

2w1w2
cos (πw1 + πw2) (16)

− (w1 − w2)
2

2w1w2
cos (πw1 − πw2)

∂

∂α
∆ (α, β) = −

(
w2

1 − w2
2

)2
4w3

1w
3
2

cos (πw1 + πw2) (17)

+

(
w2

1 − w2
2

)2
4w3

1w
3
2

cos (πw1 − πw2)

−π (w1 + w2)
3

4w2
1w

2
2

sin (πw1 + πw2)

−π (w1 − w2)
3

4w2
1w

2
2

sin (πw1 − πw2)

if we choose values of α and β such that
w1

w2
+
w2

w1
≈ 2

then (16) and (17) reduce to

∆ (α, β) ≈ 2 cos (πw1 + πw2) (18)
∂

∂α
∆ (α, β) ≈ −π (w1 + w2)

w1w2
sin (πw1 + πw2) (19)

so, for (19) to be equal to zero, the condition
w1 + w2 = n

must be fulfilled; and the approximation of the maximum energy point for each n is

φn (β) ≈ β2

n2
+
n2

4
(20)

for n ∈ Z+

Fig. 2 shows the transition curves of the Meissner equation, the approximation of MELs obtained by (20) and MELs
obtained numerically. From Fig. 2 one can notice that the approximation (20) is good enough to use in order to show
some of its properties. One can see that each MELn goes through the coexistence points in the unstable zones.
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Figure 2: Transition curves in black, Approximation of MELs in red and numerical approximation of MELs in blue dotted line. For
the Meissner equation ẍ+ (α+ βsign(cos(t)))x = 0

Substituting (20) into (16) one gets the value of ∆(α, β) over the MELn:

∆ (φn (β) , β) =
8β2 cos

(
2π
n β
)
− 2n4 (−1)

n

4β2 − n4

Fig. 3 shows ∆ (φ5 (β) , β), that is, the discriminant value over theMEL5. From Fig. 3 one can notice that |∆ (φn (β) , β)| =
2 at three different values of β, it means thatMEL5 goes though two coexistence points of the fifth unstable region which
rises from α = 6.25, β = 0. The function ∆ (φ5 (β) , β) has two critical values more, these represent the energy’s maxi-
mum value of each unstable pocket. If we are able to calculate the exact β on these critical points, we will be capable of
vanish the unstable pocket associated to each critical value.

β

0 1 2 3 4 5 6 7 8

∆
(α

,β
)

-2.9

-2.8

-2.7

-2.6
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-2.4

-2.3

-2.2

-2.1

-2

-1.9

Figure 3: Discriminant of Meissner equation, over the approximation of MEL5 i.e. ∆(φ5(β), β).

The critical values of β associated to coexistence points are β1 = 0, β2 = 2.5 and β3 = 7.5. And those associated
to the energy’s maximum value of each unstable pocket are β̄1 = 1.3754 and β̄2 = 5.5462, so the points, inside the
unstable zone rising in α = 6.25, β = 0, where the maximum energy is located are approximately: (6.325, 1.3754) and
(7.480, 5.5462). The maxim eigenvalue associated to each maximum energy point are:

|µ1,max| = 1.1546

|µ2,max| = 2.4636

By lemma 14, if one adds a dissipative term δẏ with the enough amount of damping δ to (14) then, some unstable zones
would disappear. The approximation of the minimum amount of dissipation needed to vanish the first and second unstable
pocket of the unstable region rising in α = 6.25, β = 0 are

δ1 = 0.0456

δ2 = 0.2870

Using the numerical calculation of the MEL5 we have obtain that minimum amount of dissipation needed to vanish the
pockets are

δ1 = 0.0465

δ2 = 0.2921
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Fig. 4 shows Arnold tongues for damped Meissner equation with δ = 0.0456, one can see that there is a small unstable
pocket near the point (6.325, 1.38), this is due to the approximation made in (20). If we use the damping coefficient
δ = 0.0465 instead, then, the whole pocket will vanish.
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Figure 4: Stable and unstable regions for damped Meissner equation with δ = 0.0456

This same method can be used in order to vanish any unstable pocket of any Hill equation.

Remark 17 It is clear that if we eliminate some pocket in the nth Arnold tongue, all the pockets on the same tongue
"below" it, also will disappear.

Conclusion

By using the new definitions, Maximum Energy Points and Maximum Energy Lines, we propose a method to vanish
any unstable pocket of any Arnold tongue by simply adding a dissipative term δẋ to the Hill equation; we have given a
formula to obtain the minimum damping δ needed to vanish the whole pocket. Also, we give a new characterization of
the coexistence points in terms of the maximum energy line.
The main problem with the method, here introduced, is that in order to obtain the maximum energy of a pocket, i.e. the
value of α and β where a solution has the maximum growth within all the solutions of an unstable pocket, we need to
obtain the corresponding MELn which is, in almost all the cases, only achieved by the numerical calculation of the
characteristic multipliers of the system.
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