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Drilling dynamics under 1:1 internal resonance between axial and torsional modes

Sunit K Gupta∗ and Pankaj Wahi∗
∗ Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India

Summary. In the current work, we investigate the nonlinear dynamics of a lumped parameter model of rotary drilling under 1:1 internal
resonance between the axial and torsional modes using the method of multiple scales. We observe that there is a transition in the nature
of the Hopf-bifurcation from super-critical to sub-critical after a critical operating point.

Introduction

Bifurcation characteristic in the state-dependent delay model for regenerative machine tool vibration are generally found
to be sub-critical in nature [1, 2]. However, Gupta and Wahi [3] using a global model for rotary drilling (which for
small amplitude motions is equivalent to the state-dependent delay model of drilling [4]) observed super-critical Hopf-
bifurcations. On exploring the dynamics of rotary drilling using this global model for the case of 1 : 1 internal resonance
between the axial and torsional modes, we have numerically observed a transition from super-critical to sub-critical
bifurcations as the rotary speed is decreased. In the current work, we investigate this transition analytically using the
method of multiple scales.

Mathematical model of regenerative drilling and its analysis

The non-dimensionalized 2-DOF model for regenerative drilling process, in the absence of any self-interruption (bit-
bounce or stick-slip), is a state-dependent delayed differential equation of the form [3, 4]

ẍ(τ) + 2ζβẋ(τ) + β2x(τ) = nψδ0 − nψ (x(τ)− x(τ − τn) + v0τn) , (1a)

θ̈(τ) + 2κθ̇(τ) + θ(τ) = nδ0 − n (x(τ)− x(τ − τn) + v0τn) , (1b)

where ζ and κ represent the axial and torsional damping factors, respectively, β represents the natural frequency ratio
between the axial and torsional modes, ψ represents the non-dimensional cutting coefficient, δ0 (= 2πv/n) is the non-

dimensional steady depth of cut per cutter with v =
v0
ω0

=
nδ0
2π

as the non-dimensional velocity ratio. The time delay

(τn) in Eq. (1) is determined by τn = τ0 −
θ(τ)− θ(τ − τn)

ω0
with τ0 as the constant delay or the time period for one

revolution (
2π

nω0
). It can be noted from Eq. (1) that the substitution of β = 1, θ =

x

ψ
and ζ = κ reduces the above 2-DOF

system to a single degree of freedom system in only x as

ẍ(τ) + 2κẋ(τ) + x(τ) = 2πvψ − nψ(x(τ)− x(τ − τn) + vω0τn) , (2)

and the equation governing the delay becomes τn = τ0 −
(x(τ)− x(τ − τn))

ω0ψ
. (3)

The steady state solution of Eqs. (2) and (3) is given by xs = 0 and τs = τ0. For small disturbances, we substitute
x(τ) = εη(τ) with η(τ)� 1 in Eq. (3) and solve for the delay τn explicitly in terms of a series in ε as

(4)
τn = τ0 + ε

1

ω0ψ
(η(τ − τ0)− η(τ))− ε2

(
1

ω0ψ

)2

η̇ (τ − τ0) (η(τ − τ0)− η(τ))

+ ε3
(

1

ω0ψ

)3(
η̇(τ − τ0)2 (η(τ − τ0)− η(τ)) +

η̈ (τ − τ0)
2

(η(τ − τ0)− η(τ))2
)
.

Now, on substituting τn from Eq. (4) and x(τ) = εη(τ) in Eq. (2) and expanding in a Taylor series while retaining terms
till O(ε3), we get

(5)
ε

(
η̈ + 2κη̇ + η + nψ (η − ητ0)

(
1− v

ψ

))
+ ε2

(
nψη̇τ0 (η − ητ0)

(
v − ψ
ω0ψ2

))
− ε3

(
nψ

2
(η − ητ0)

(
η̈τ0ητ0 − ηη̈τ0 + 2η̇2τ0

))(v − ψ
ω2
0ψ

3

)
= 0

with ητ0 = η(τ − τ0). Note that the above DDE (Eq. (5)) now involves delayed terms with a constant delay only. It can
be observed that the O(ε) term in Eq. (5) gives the linearized equation about the steady state. A linear stability analysis
in the parametric space of ω0 − v reveals the Hopf-bifurcation point as

ω0,cr =
2π ω

n
(
2π + arctan

(
−4 ω κ (ω2−1)

ω4−2ω2+1+4ω2κ2 ,
−ω4−1+4ω2κ2+2ω2

ω4−2ω2+1+4ω2κ2

)) , (6)
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Figure 1: (i) Stability boundary with n = 4, ψ = 13.8943, β = 1 and κ = 0.01 depicting sub- and super- critical Hopf bifurcation marked using Red
and Blue color, respectively. (ii) Bifurcation diagram with varying ω0 representing the θ values corresponding to ẋ = 0 for v = 13.85.

vcr =
1

2

ω4 − 2ω2nψ − 2ω2 + 2nψ + 1 + 4ω2κ2

n (1− ω2)
, (7)

where ω is the frequency of the ensuing limit cycles from the Hopf-bifurcation point. In order to analyze the nonlinear
dynamics of the system close to the Hopf point, we perturb one of the operating parameters, viz. ω0 = ω0,cr − ε2k1 with
k1 > 0 in Eq. (5). We next introduce multiple time scales as T0 = τ , T1 = ετ , T2 = ε2τ and follow the procedure
described in [2, 5]. The final slow flow equation governing the evolution of the amplitude R is

Ṙ = ε2
−4nω2ψ2ω0,crπ p1 p2 q1 k1R+ nω4

(
2κn p21 q2ω0,cr + 384π p1ω

4κ6 − 48ω2 q2 p
3
1 κ

4 − 4 q4 p
4
1κ

2 − 3 q3 p
6
1

)
R3

2ψ2
(
4n2p21 p3 p2 ω

3
0,cr + 4κπ n p1 p4 p2 ω2

0,cr + π2 (p21 + 4ω2κ2) p2ω0,cr

)
(8)

where p1 = (ω2 − 1), p2 = 36ω2 κ2 + 16ω8 − 40ω6 + 33ω4 − 10ω2 + 1, q1 = (2κ)2 − p21, p3 = ω2 + κ2, p4 =
3ω4− 2ω2 +4ω2κ2− 1, q2 = 96ω2κ4−

(
48ω6 − 196ω4 + 32ω2 − 8

)
κ2− 36ω8 +63ω6− 18ω4− 9ω2, q3 = 1− 2ω2,

q4 = 8ω4 − 4ω2 + 5. The non-trivial solution for the amplitude of the limit cycle (R) from Eq. (8) is

R =

√
4nω2ψ2ω0,crπ p1 p2 q1 k1

nω4 (2κn p21 q2ω0,cr + 384π p1ω4κ6 − 48ω2 q2 p31 κ
4 − 4 q4 p41κ

2 − 3 q3 p61)
(9)

Since −4nω2ψ2ω0π p1 p2 q1 k1 > 0, the nature of the Hopf-bifurcation is decided by the sign of the denominator of
Eq. (9). Hence, the transition from super- to sub- critical bifurcation can be determined from the condition

2κn p21 q2ω0,cr + 384π p1ω
4κ6 − 48ω2 q2 p

3
1 κ

4 − 4 q4 p
4
1κ

2 − 3 q3 p
6
1 = 0 . (10)

Substituting for ω0,cr from Eq. (6), we solve the above for ω and obtain the operating parameters for transition from
super- to sub- critical bifurcations from Eqs. (6) and (7). The stability curve, for ψ = 13.8943, n = 4 and κ = 0.01,
depicting different regions for sub and super-critical bifurcation has been shown with different colors in Fig.1i. In Fig. 1ii,
we have shown the bifurcation diagram obtained for rotary drilling using the global model [3] wherein we plot the θ
values corresponding to the Poincaré section ẋ = 0 for v = 13.85. From Fig.1ii, we can clearly notice that the right
portion of the stability boundary corresponds to a super-critical bifurcation whereas the left portion involves a sub-critical
bifurcation. Hence, numerical simulations verify the analytical findings of the method of multiple scales.

Conclusion

Transition in the bifurcation characteristics in the state-dependent delay model of rotary drilling has been analyzed using
the method of multiple scales. In general, a reduction in rotary speed leads to a subcritical bifurcation.

References

[1] Kalmár-Nagy T., Stépán G., Moon F.C. (2001) Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlin Dyn
26:121-142.

[2] Wahi P., Chatterjee A. (2005) Regenerative tool chatter near a codimension 2 Hopf point using the multiple scales. Nonline Dyn 47:275-283.
[3] Gupta, S. K., Wahi, P. (2016) Global axial–torsional dynamics during rotary drilling. J. Sound Vib 375:332-352.
[4] Nandakumar K., Wiercigroch M. (2013) Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration. J. Sound

Vib 332:2575 - 2592.
[5] Das S.L., Chatterjee A. (2002) Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcation. Nonline

Dyn 30:323-335.


