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Analytical studies of a two degree-of-freedom vibro-impact system
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Summary. A system of two coupled oscillators, with two rigid barriers imposed on the second one, is considered. The method of
multiple scales is used in combination with a saw-tooth function. The relation describing the slow invariant manifold is found. The final
approximate solutions are of semi-analytical nature. Occurance of the two response regimes is verified: periodic motion and strongly
modulated response. The interplay between the system parameters is analyzed.

Introduction

Most of approximate analytical methods applicable to nonlinear dynamical systems take their roots from the classical
perturbation approach, and usually their usage is limited to weakly nonlinear problems [7]. Among practically important
cases of strong nonlinearities, the vibro-impact systems are the ones for which general analytical solutions are just im-
possible. However, in recent years, several approaches have been developed by imposing certain conditions on motion
of such systems, e.g. a combination of the multiple scales method with a saw-tooth function [1, 2, 3, 4], the non-smooth
temporal transformation (NSTT) [5], the concept of impact modes [6].
The first abovementioned technique has been applied to systems with the vibro-impact nonlinear energy sink (VI NES),
in the context of the targeted energy transfer (TET). Only impact interactions between the NES and the primary oscillator
have been considered. In what follows, a more complicated NES configuration, involving elastic and viscous components,
is studied.

Mathematical model

Consider a system of two coupled oscillators illustrated in Fig. 1. The stiffness constants of linear springs are denoted
by k1, k2, while the damping coefficients are c1, c2. The bodies are interconnected by a purely nonlinear (cubic type)
spring with a constant k′2. It is assumed that mass of the second body is relatively small (m2 � m1). Moreover, motion
of this oscillator is restricted by two rigid barriers; the restitution coefficient is denoted by κ. The system is subjected to
the external excitation: F1(t) = F10 sin(ω1t).
Using the displacements x1 and x2 as the generalized coordinates, one can write the equations of motion of the system in
the non-dimensional form:

Ẍ1 +X1 + γ1Ẋ1 − β2(X2 −X1)3 − γ2(Ẋ2 − Ẋ1) = f10 sin(Ω1τ)

εẌ2 + Ω2
20X2 + β2(X2 −X1)3 + γ2(Ẋ2 − Ẋ1) = −ε(κ+ 1)

∑
j

Ẋ2(τ)δ(τ − τj)
(1)

where X1 = x1/L, X2 = x2/L, an overdot denotes differentiation with respect to the dimensionless time τ = ω10t, the
mass ratio ε = m2/m1 plays a role of the small parameter, and
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Moreover, δ(•) is the Dirac delta function whereas τj is a time instance of the jth impact. Some of the quantities
are assumed to be small, thus, the following parameters are formally introduced: γ1 = εγ̂1, γ2 = ε2γ̂2, β2 = ε2β̂2,
f10 = εf̂10, Ω2

20 = εΩ̂2
20.

Figure 1: The vibro-impact system to be considered
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Figure 2: Semi-analytical results: a) the SIM (solid) and the curve B2
2 = g(C2) (dashed), b) response of the system

Asymptotic analysis and results

Consider the simplest case of TET, i.e. 1:1 resonance with two impacts per cycle. Two detuning parameters are used:
Ω1 = 1 + εσ̂1, Ω2

20 = 1 + εσ̂2. In order to analyze the system, two time scales (τk = εkτ with k = 0, 1) are introduced:
Xi = Xi0(τ0, τ1) + εXi1(τ0, τ1). At the approximation of zero order we get

D2
0X10 +X10 = 0, D2

0X20 +X20 = −(κ+ 1)
∑
j

D0X20δ(τ0 − τ0j) (3)

The solutions can be expressed in the form

X10 = B1(τ1) sin(τ0 + φ1(τ1)), X20 = B2(τ1) sin(τ0 + φ2(τ1)) +
2

π
C2(τ1) arcsin[cos(τ0 − θ2(τ1))] (4)

where the second part of X20 is the saw-tooth function that describes impacts at τ0 = jπ + θ2 for j = 0, 1, 2, . . ..
Analysis of the impact conditions leads to the relation between B2 and C2 which defines the slow invariant manifold
(SIM):

C2 =
1 ±

√
1 + ρ2

√
B2

2 −B2
2min

1 + ρ2
, B2min =

ρ

1 + ρ2
, ρ =

2(1 − κ)

π(1 + κ)
(5)

At the next level of approximation, the solvability conditions provide an additional relation: B2
2 = g(C2). The fixed

points of the slow-flow are found graphically as the intersection of the new curve and the SIM (5). In Figure 2a, an
example is presented for the set of parameters: κ = 0.65, γ̂1 = γ̂2 = 0.1, β̂2 = 0.1, σ̂1 = σ̂2 = 0.1, f̂10 = 0.2. Due to
complexity of the differential equations forB2 and φ2, they are solved numerically. Hence, the final steady-state solutions
have a semi-analytical character. For the given case, the system response is shown in Fig. 2b for ε = 0.1.
Investigations of the semi-analytical solutions are focused mainly on stability of the fixed points located on the two
branches of the SIM. As indicated in literature (e.g. see [3, 4]), the vibro-impact systems can exhibit not only periodic
motion, but also strongly modulated response (SMR). Occurance of such behaviour in the studied case is verified. The
analytical results are compared to purely numerical solutions of Eqs. (1). The interplay between particular parameters is
tested, especially the balance between the excitation and the two forms of dissipation is analyzed.

Conclusions

Semi-analytical solutions for a vibro-impact system with elastic and viscous components are obtained. Thanks to the
assumption of small mass ratio, the method of multiple scales can be used. However, this approach does not require the
restitution coefficient to be close to unity. In further works, the presented procedure may be extended to more complex
cases, including one-sided impacts.
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