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Summary. We describe a method to measure electrically out-of-plane motions of an electrostatic MEMS transducer excited para-
metrically via an in-plane (horizontal) electrostatic transducer. The method exploits homodyne detection of the current induced by
out-of-plane motions. We present experimental results of the actuator principal parametric resonance observed using this method. The
actuator possess a 1:1 internal resonance between the first in-plane and out-of-plane bending modes. A model is deployed to study the
interaction between in-plane subharmonic resonance of order one-half and out-of-plane principal parametric resonance.

Introduction

Parametric excitation of Micro Electrical Mechanical Systems (MEMS) is an attractive actuation method promising a
higher quality factor than direct excitation [1]. It also opens the door for out-of-plane actuation of MEMS fabricated
from a single layer, such as Silicon-On-Insulator technology. Parametric resonance arises from time-dependent tuning of
the system parameters, instead of direct time-dependent forcing [2]. Parametrically excited MEMS can be used for high
accuracy mass sensors [3] and filters [4].
One scenario for parametric excitation is to exploit the nonlinear coupling of in-plane and out-plane bending modes of
prismatic structures. In this work, we investigate the interaction between subharmonic and principal parametric resonances
utilizing a micro beam electrostatic actuator designed to obtain a 1:1 internal resonance between the first in-plane and out-
of-plane bending modes.

Actuator Design and Fabrication

The actuator, Fig. 1, is fabricated in Teledyne Dalsa’s MIDIS process [5, 6] from polysilicon with density of ρ =
2330 kg/m3 and Young’s modulus of E = 169 GPa. Its dimensions are listed in Table 1. It comprises of a microplate
supported by a cantilever beam. A bottom electrode serves as a detector of out-of-plane motions. Two sidewall electrodes
provide direct (in-plane) electrostatic excitation. Note that the right sidewall electrode is removed in Fig. 1 for clarity.
To avoid fabrication uncertainties, the beam width is designed slightly smaller than its thickness to guarantee that the
natural frequency of out-of-plane bending will be higher than that of in-plane bending. The natural frequencies of the first
in-plane and out-of-plane bending modes are then tuned to match by applying DC voltage VDCB

to the bottom electrode.

Figure 1: Schematic of the actuator

Table 1: Actuator dimensions

Parameter Value

Beam length, Lb 400 µm

Beam width, bb 29.5 µm

Beam thickness, hb 30 µm

Plate length, Lp 230 µm

Plate width, bp 215 µm

Plate thickness, hp 30 µm

Bottom gap, d 2 µm

Side gap, g◦ 2 µm

Experiment

Experimental Setup
The actuator is vacuum encapsulated in an opaque silicon cap, precluding optical motion detection. Instead, we developed
a method to sense out-of-plane motions by measuring motion-induced current by a transimpedance amplifier (TIA) and
detecting the frequency component of that current at the matched natural frequencies ωn by a lock-in amplifier (LIA).
Figure 2 shows the equivalent circuit of the actuator and the motion detection circuit.
The microplate is excited in-plane (along the Y-axis) at twice the natural frequency Ω = 2ωn and the current flowing
through the bottom electrode is collected. The LIA is set to lock onto the second harmonic 2 ωn in order to detect
resonant motions at ωn. This current therefore serves as a detector for resonant out-of-plane motions with a frequency of
ωn.
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Figure 2: Circuit model for the actuator

The microplate is connected to virtual ground through TIA, while the bottom electrode is connected to a DC voltage source
set to VDCB

= 37.5 V. One of the sidewall electrodes is connected to an arbitrary waveform generator that provides the
direct excitation signal,while the other sidewall electrode is grounded. The forcing frequency is varied in a frequency
range Ω = [75− 75.3] kHz ≈ 2ωn.

v(t) = VDCS
+ VACS

sin(Ωt) (1)

Experimental Results
The primary motion of the microplate occurs in-plane. No motion is observed out-of-plane (along the Z-axis) below the
activation level of parametric resonance. Beyond the activation level, resonant out-of-plane motions are measured by the
TIA in the vicinity of ωn. The magnitude and phase frequency-response curves of the out-of-plane motion are shown in
Fig. 3 for VDCS

= 60 V and VACS
= 30 V. They demonstrate classical principal parametric characteristics: a sudden

jump-up from a trivial response to a non-trivial response during frequency sweep-up (red dots) and a hysteretic jump-down
to the trivial response during frequency sweep-down (blue dots). The corresponding phase frequency-response curve, Fig.
3(b), shows a deterministic slowly-varying phase delay of the the out-of-plane response with respect to in-plane excitation
and within the principal parametric resonance window of instability. Outside of this window, the phase of the nontrivial
response obtained in frequency down-sweep is deterministic while the phase delay of the trivial responses is stochastic

(a) Magnitude (b) Phase

Figure 3: Frequency-response of the out-of-plane motion for Vac = 30 V and VS = 60 V

Model

Analytical Model
To study the interaction between in-plane v(x, t) and out-of-plane w(x, t) motions, we follow Kambali and Pandey [7] to
extract a reduced-order model (ROM) of the actuator. The model describes the support beam motions taking into account
viscous damping, beam in-extensibility, in-plane, and out-of-plane electrostatic forces

ρAv̈ + csv̇ + EIzv
iv − EA

2Lb
v′′
∫ Lb

0

(
w′2 + v′2

)
dx = 0

ρAẅ + cbẇ + EIyw
iv − EA

2Lb
w′′
∫ Lb

0

(
w′2 + v′2

)
dx = 0

(2)

where A is the beam’s cross-sections area, cs and cb are the viscous damping coefficients for in-plane and out-of-plane
motions, respectively, and Iz and Iy are the beam second-moment of area around the Y- and Z-axes, respectively. The
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forces and moments acting on the microplate, with mass Mp, appear as boundary conditions at the beam tip (x = Lb):

Fz = −Mpẅ(Lb, t) +
εLpbpV

2
DCB

2
(
d− w(Lb, t)

)(
d− w(Lb, t)− Lpw′(Lb, t)

)
My = −

MpL
2
p

3
ẅ′(Lb, t) +

εL2
pbpV

2
DCB

4
(
d− w(Lb, t)

)(
d− w(Lb, t)− Lpw′(Lb, t)

)
Fy = −Mpv̈(Lb, t) +

εLphp(VDCS
+ VACS

)2

2
(
g◦ − v(Lb, t)

)(
g◦ − v(Lb, t)− Lpv′(Lb, t)

)
Mz = −

MpL
2
p

3
v̈′(Lb, t) +

εL2
php(VDCS

+ VACS
)2

4
(
g◦ − v(Lb, t)

)(
g◦ − v(Lb, t)− Lpv′(Lb, t)

)
(3)

They comprise of account for the inertia of the plate and the electrostatic force and moment acting on the plate. These
partial differential equations of motion were nondimensionalized with respect to Lb, g◦, d, and the time-scale T =√

12ρL4
b

b2bE . The nondimensional equations are:

v̈ + csv̇ + viv − v′′
∫ 1

0

(
α1v

′2 + α2w
′2)dx = 0

α3ẅ + cbẇ + wiv − α3w
′′
∫ 1

0

(
α1v

′2 + α2w
′2)dx = 0

(4)

where the parameters α1, α2, α3, cb, and cs are defined in appendix A.
To reduce those equations of motion into ordinary differential equations, we use Galerkin expansion in terms of the first
in-plane and out-of-plane bending mode shapes φ(x):

v(x, t) = φ(x)q(t)

w(x, t) = φ(x)p(t)
(5)

Towards that end, we multiply the equations of motion, Eqs. (4), by the mode shape φ(x) and integrate over the domain:∫ 1

0

φ(x)
[
v̈ + csv̇ + viv − v′′

∫ 1

0

(
α1v

′2 + α2w
′2)dx] dx = 0∫ 1

0

φ(x)
[
α3ẅ + cbẇ + wiv − α3w

′′
∫ 1

0

(
α1v

′2 + α2w
′2)dx] dx = 0

(6)

We account for the boundary conditions, by applying integration by-parts to the fourth-order terms in Eqs. (6), as follows:∫ 1

0

φ(x)wiv(x, t) dx = φ(x)w′′′(x, t)
∣∣1
0
−
∫ 1

0

φ′(x)w′′′(x, t) dx

= φ(x)w′′′(x, t)
∣∣1
0
− φ′(x)w′′(x, t)

∣∣1
0

+

∫ 1

0

φ′′(x)w′′(x, t) dx (7)

The boundary conditions can then be substituted into Eq. (7) to yield,∫ 1

0

φ(1)wiv(x, t) dx = φ(1)w′′′(1, t)− φ′(1)w′′(1, t) +

∫ 1

0

φ′′(x)w′′(x, t) dx

= −Fzφ(1) +Myφ
′(1) +

∫ 1

0

φ′′(x)w′′(x, t) dx (8)

where Fz and My are the total force and moment at the beam end given in the nondimensional form by:

Fz = −ηw1ẅ(1, t) + ηw2

V 2
DCB(

1− w(1, t)
)(

1− w(1, t)− Lp

Lb
w′(1, t)

)
My = −ηw3ẅ

′(1, t) + ηw4

V 2
DCB(

1− w(1, t)
)(

1− w(1, t)− Lp

Lb
w′(1, t)

) (9)

where the parameters ηij are defined in appendix A.
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A similar procedure is applied to the in-plane displacement v(x, t), the result is substituted into (6) before carrying out the
Galerkin expansion on those equations to obtain a set of two ordinary differential equations representing the reduced-order
model:

β4q̈ + β5q̇ + β6q + β7q
3 + β8p

2q =
β1V

2
DCB

(1− β2q)(1− β3q)

β4p̈+ β5γ4ṗ+ β6p+ β7p
3 + β8pq

2 = β1
γ1V

2
DCS

− γ2VACS
VDCS

cos(Ωt)− γ3V 2
ACS

cos2(Ωt)

(1− β2p)(1− β3p)

(10)

Numerical Results
To identify the actuator parameters, the model predicted out-of-plane pull-in voltage and natural frequency were matched
to those measured experimentally. The measured pull in voltage was 54 Volts and the natural frequency was ωn = 46 kHz.
This parameter identification routine resulted in adjusting the device layer thickness to hb = hp = 28µm, the beam
width to bb = 28µm, and the bottom gap to d = 2.4µm. All of these dimensions are within the standard tolerances
of the fabrication technology. The static pull-in voltage obtained from solving Eqs. (4) numerically with the adjusted
dimensions was 53.1 V.

Figure 4: Experimentally measured and numerically predicted frequency-response curves for VDCB
= 37.5 V, VDCS

=
60 V and VACS

= 30 V

The quality factor of out-of-plane motions was measured experimentally as Q = 10. Using the identified dimensions
and properties listed above, the equations of motion, Eqs. (10), were integrated numerically for 300 excitation periods τ
to obtain the steady-state response. Figure 4 shows the frequency-response curve for the normalized out-of-plane peak-
to-peak displacement where the bottom electrode voltage is set to VDCB

= 37.5 V and the sidewall electrode bias and
signal amplitude are set to VDCS

= 60 V and VACS
= 30 V. The nondimensional natural frequency of the first out-

of-plane bending mode under this waveform was ωn = 0.72. The frequency up-sweep is shown in red dots while the
down-sweep is shown in blue dots. The experimentally measured frequency response curves are shown in solid red lines,
for the up-sweep, and blue lines, for the down-sweep. The two frequency-response curves are in good agreement, thereby
validating the model. They demonstrate a window of instability in the frequency range [75.09, 75.19] kHz, corresponding
to Ω ≈ 2ωn, and co-existence of the trivial and for the non-trivial responses in a frequency range below 75.09 kHz.
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Figure 5: The out-of-plane force-response curve for VDCB
= 37.5 V, VDCS

= 60 V and Ω = 1.31
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The force-response was obtained to determine the actuator’s activation level, where the non-trivial response first appears.
Figure 5 shows a force sweep of VACS

where the bias voltages were set to VDCB
= 37.5 V and VDCS

= 60 and the
signal frequency was set to Ω = 1.31. The activation level under these conditions was found to be VACS

= 29.2 V
corresponding to the Hopf bifurcation encountered along the branch of trivial solutions during force up-sweep.
The window of instability was mapped by repeating this analysis at different signal frequencies Ω to obtain the instability
plot shown in Fig. 6. The shaded area in the figure indicate the region in the forcing parameter space where principal
parametric resonance is realizable. The minimum activation level was found to be VACS

= 20 V at a signal frequency of
Ω = 1.329.

1.20 1.25 1.30 1.35 1.40
0

10

20

30

40

Frequency

A
C
V
ol
t

Figure 6: The instability plot of principal parametric resonance for VDCB
= 37.5 V, VDCS

= 60, and Q = 10

The model was used to investigate the effect of mistuning on energy transfer between in-plane subharmonic resonance
and out-of-plane principal parametric resonance. The bottom electrode bias voltage VDCB

was used to tune the initially
mis-tuned natural frequency of the out-of-plane bending mode while the in-plane mode was excited with the waveform
VDCS

= 60, VACS
= 30. As the magnitude of VDCB

was varied from 20 V to 42 V in discrete steps, a frequency sweep
was undertaken at each step to determine the resonant peak-to-peak out-of-plane displacement. These values are plotted
in Fig.7 as a function of VDCB

. The maximum resonant displacement is obtained at VDCB
= 30.6 V where the in-plane

and out-of-plane natural frequencies are tuned. It is obvious that tuning the two natural frequencies enhances the energy
transfer channel between the two modes, thus amplifying principal parametric resonance.
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Figure 7: The peak-to-peak out-of-plane displacement as a function of the the bottom electrode bias voltage VDCB

Conclusions

This paper presented experimental evidence of in-plane subharmonic resonance of order one-half and measurements of
out-of-plane principal parametric resonance. To our knowledge, this is the first all-electric implementation of parametric
resonance where both excitation and detection have been achieved via electrostatic transducers. We also developed a
model that captures the interaction between the actuator’s in-plane and out-of-plane motions and validated it by compari-
son to experimental results. The model was then utilized to examine the activation level of principal parametric resonance,
the region in the forcing parameter-space where it results in nontrivial response, and the relationship between in-plane
and out-of-plane natural frequency mistuning and energy transfer between the corresponding resonances. As expected,
we found that reducing modal mistuning enhances energy transfer from in-plane subharmonic resonance to out-of-plane
principal parametric resonance.
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Appendix A - Lumped Parameters

α1 =
6g2◦
b2b
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6d2

b2b
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b2b
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3L2
bCb

h3b
√
Eρ
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2
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3L2
bCs

b2hb
√
Eρ
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