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Summary In recent years, Udwadia et al. [1] have proposeddhtain dynamical equations using Lagrange methal
generalised parameters as quaternions ¢. In 20@i#fesent point of view was applied by the actaaithor to treat problems
whatever the nature of the parameters. Since tygislinot (a priori) included, the main aim is thecessary use of stress tensor in
the Virtual Work Principle (VWP), then its eliminai for rigid bodies. Here we propose to show tpgliaability of our method

to friction and division.

Background.

If body forces are not present for simplicity, M&/P is written for a bod

_IB pa.vdx+ jr ¢.vda—J'B o-gradvdx=0

where p is the densitya the acceleration@ the surface forcesg the stress tensor, andthe virtual piecewise

displacements. In the application of some rotatiomation, x=R(q(t))X, xbeingthe actual position of the partice
the virtual displacements ave(R’; R’x)w where the \is are arbitrary an® is a 3x3 matrix function of quaternions.
R’ is the partial derivative dR(q,...,q). Ris not necessarily a rotation, i.e. the constraigt1 is not fulfilled as an
a priori condition.

If we take account of the actual virtual displacateén the above formula,, then the first termhis tirtual work

(denoted_;w;) of acceleration. Then we have
grad v= (R} RYw=Swi+Aw;, o.gradv=(c:S)w

whereS andA are resp. the symmetrical and anti-symmetricaispairthe matrixR’; R*. Now in order to eliminate
the stress tensor, we require the relati§mng=0.(sum oni), a priori realised iR is a rotation. In addition, it is seen
that surface forceboccur by global quantities only (i.&(f) and M(f)). So the following compatibility conditions
result: whatever thei’s such thaGw=0, we have

[-Li+M(f) aJw;=0 (sum on)
(a;: dual vector of matrixy) under the only above hypotheses. Finally we witiee rigidity constraing'g=1 when
guaternions are used..

Example 1: Contact with friction.

We consider an homogeneous rigid wheel (centrea@us r and mass m) rolling in a vertical plangg on an

inclined line (or surface) §X, under the gravitational acceleration g downwatls, gravitational force being (f=-

mgy,) applied on the centre O of the wheel. We used¢ferential Ref=@XyY oZ, with the angle betweenyf and

OpXp noted a . Two-dimensional Euler parameters (pg)jrdroduced to specify the rotation of the whsel,
Ri=R=1-20f , R=-Rp=-2pq , R'=R7A , A=1+4¢°(p*+q*1

Now we introduce the virtual coefficientayw,w,,W,) associate to the parametexg/(p,q and the conditiow;S=0,

i.e. pw,+gqwy=0 . Under the above condition, the VWP is writing

- IB 0.V dX-mgy v(O)+Tvi(A)+Nv,(A)=0

where(T,N,0)are the components of the two-dimensional corftace on the wheel applied at the contact péint
Now we must use the contact law of friction, by rpde in the hypothesis of a bilateral contfetr) at the point

A=(x,y-r,0) of the wheel, implying the geometric constraintr , together with the Coulomb law of friction
equivalent to the inequality of Duvaut and Lions

T [vi (&)~ (A)]+N| [V (A) Hu (A)]]=0

First the parameters are specified suchwhatv,=w,=0 , satisfyingw;S=0. It resultsv(x)=(0,w,0) so that by taking
account of the bilateral contagtr

mgcosa-N=0and K +mgsina X + k|N”u1(A)‘ =0

IB pavdx+mgy, v(O)-Nw(A)+ k|N”V1(A)‘ >0 whereN=mg cosa
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that is available whatever the parameténﬁ,wp,wq) . After some straightforward calculus, the acceieraterm is
obtained under the form

J'Bpa.vdx = MXWk+ay; Ptay,t+2a,, Pa+2bd?
8, =2Mr(0PWo+ POW), 85,=2mMrA(pott p>+A407)We,8,=2MI(qwp+ pw), b=4mregwy

Taking account of this expression, the differeniaiiational inequality follows

(mX+mgsina)wx+kmgcosa

wx+r(apwp+aqwq)‘+2mr2(Awp+Bwq)zo

(where ap,dq andA,B are given functions) under the compatibility cdiati pw,+qw,=0. That is the basic relation
to solve the problem completed naturally by initehditions on velocities (and positions).

Example 2: Dividing arigid body.

We consider a rigid bodB* divided (on a virtual manner) into two paBg andB,. We noteB the system of these
two bodies and S their common boundary. Each paytine viewed as a continuum and the precedentythmeay be
applied to the systeid described by parametans((?o,ql,...,q;?T. In fact we introduced the respective motions
X(a): a)+R(a)x( a=1,2

whereT andR are functions of parametegisand then the associate virtual displacement
Naturally, the constraints of the typgS=0 must be fulfilled on each part in order to elimiahe Cauchy stress
tensor in the interior of each of the two bodBzsandB,. But we must write geometric constraints of contyon the
common boundary, vie’=x® on the surface S, i.e.

A T=T®-T®=0 and A R=R?-R®=0
This join is realised by local Cauchy forces aldhg common boundary S, but, in our hypothesis sldcements,
resultants and moments only may be introduced ke &xcount of these forces. So, in the Virtual WBrinciple
applied toB, we must introduce

J= js ¢ v® da+ js PPV da

where resultanR and momenM are defined on surfaceS. But this quantity isteelao Cauchy stress tensor and in
our framework must be eliminated since they areriat forces of the entire bodd*. This condition is satisfied if we
choose the virtual displacements such that
W AIT —o , W Aa(A)=0
0g
As an example we consider a system of two cylirdrinassed’ (massm’) and B; (masshg) moving without
friction along thex-axis. They are connecting by a linear-sprikg énd the masB’ is connected to the origin by a
linear-spring ko). We decomposed the maBs into two sub-bodied3; and B, of massesn, and m,. So we are
considering a multi-body system. Parameters ddagribe system are the respective coordinatgpgand (,+q3)
T1=(ql,0,0), TZ:(qZ!O!O)v T3=(QZ+QS,O,O)
Rigidity constraint oB’ is thenA T=T,-T;=0, i.e.g,=q,. So the virtual principle is reduced to
{-L+[R()+R(P)]. T }w;=0
[R()-T"Iwi=[-K o] W1 +[K s0fa]W2+[-K 305] (W2t Ws3)
Since AT =T,-T;=(q»-01)(1,0,0) we have the constraint {w,;=0) and for any (wws)
(=M G, —Ko G )W +(—MyCp+KsGs) Wo + (M6 +6s) —Ks Gs)Ws =0

and naturally the geometric constraint of rigidipzq;. These equations may be obtained by other methods.

Conclusion.

The present work has presented a natural linkiagistetween Analytical Dynamics and Continuum Metts: The
key of our scheme was the use of the Virtual Workddpal. Then the elimination of Cauchy stressasoduces
compatibility relations between virtual coefficient
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