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Summary. This paper focuses on the vibrocompaction process of quartz agglomerates, where unbalanced motors are used to compact a 

quartz-resin mixture. A nonlinear model is introduced which includes some of the main nonlinearities present in the real system: the 

nonideal interaction between the motors and the vibrating system , contact and impacts between mixture and piston (the platform upon 

which the motors are mounted) and also between the mixture and the supporting mould, and a nonlinear constitutive law for the 

mixture, which allows modelling the compaction itself. By numerically solving the system of differential equations corresponding 

to this model, some insight into the system nonlinear behaviour is obtained, with special interest in the influence of different 

factors on the final level of compaction achieved. 

 

Introduction  

 

Vibrating machines are extensively used as a means to compact granular materials, with applications in geotechnics, 

manufacturing and other engineering areas. In particular, this paper has been motivated by the interest of the authors 

in a particular manufacturing process, where a quartz-resin mixture is compacted by using the vibration produced by a 

set of unbalanced motors, together with a vacuum system. 

Quartz agglomerates, made of granulated quartz mixed with a polyester resin, are widely used as an artificial stone for 

countertops in kitchens or bathrooms. The manufacturing process of a slab of this material starts with the filling of a 

mould with the mixture of quartz and resin. Once the mould is full, a conveyor belt carries it to the vibrocompaction 

zone, where the thickness of the slab is reduced to nearly half of its initial value, by eliminating the air out of the 

material. Then, the mixture is cured in a kiln, during a specified time interval, at a suitable temperature for the 

polymerization of the resin. After the resin is polymerized, an air stream is used to cool the slab before it enters the 

mechanical finishing stage. During this process the edges are cut, producing a slab of prescribed dimensions, and the 

surfaces are polished. Then, the product is ready for the quality control stage. 

It is worth giving some more insight into the vibrocompaction stage of the process, which is the one of interest for the 

purpose of this study. Before the mixture has been compacted, it is composed of three different phases: solid (the 

quartz grains), liquid (the resin) and gas (air). The air is present in the material in two different ways: as bubbles 

within the resin or as gaps between grains of quartz that the resin has not been able to fill. The aim of the compaction 

process is to eliminate the air out of the mixture, since the presence of pores at the surface of the final countertop is 

clearly detrimental from a practical point of view: the pores tend to accumulate dirt and are rather difficult to clean.  

The compaction is conducted by means of several unbalanced electric motors, mounted on a piston with the 

dimensions of the slab surface. At the beginning of the vibrocompaction process, the piston descends onto the mixture 

and exerts a static pressure, due to its weight and to an air pressure applied on it. Then, the air pressure inside the 

mould is reduced by using a vacuum system, after which the motors are switched on. The vibration produced by the 

unbalanced motors is the main responsible for the compaction. During the motion of the system, there can be 

separations and impacts between the piston and the slab, which are generally beneficial for the compaction, as they 

produce very high peaks of compression forces. In order to reduce vibrations in the vicinity of the compaction 

machine, elastic elements are placed between the foundation of the machine and the ground, acting as a vibration 

absorber and thus protecting nearby equipment. Fig. 1 shows a pilot plant used for testing purposes, which preserves 

the main features of the actual industrial machine. It is interesting to note that there are two motors mounted on the 

piston, which rotate in opposite directions in order to cancel the horizontal components of the centrifugal forces on 

the unbalanced masses. Hence the net effect of the rotation of both motors is an oscillating vertical force. 

From the above comments, it is clear that the vibrocompaction process is extremely complex from a physical point of 

view. A large number of factors –some of them being intrinsically nonlinear– influence the final result of the 

compaction: 

- The quartz granulometry, the rheological properties of the resin and the mass ratio between quartz and resin 

affect the mechanical behaviour of the compacting mixture. This behaviour is necessarily nonlinear, since the mixture 

suffers irreversible deformation during compaction. Moreover, an accurate description of this constitutive law would 

require modelling the motion of the bubbles through the mixture, the friction between quartz particles, the interaction 

between quartz and resin, etc. Some investigations about suitable constitutive laws for compacting materials can be 

found in [1–7]. 

- The dynamic properties of the different elements of the machine –the piston, the conveyor belt supporting 

the mould, the elastomer between the foundation and the ground, etc. – may influence the vibrocompaction as well. 

- The speed of the motors, their available power and the amount of unbalance are key parameters of the 

process. 

- The final result of the compaction may also depend on the duration of the process. 

- The spatial distribution of the vacuum channels influences the extraction of the air out of the mixture, 

thereby affecting the compaction. 
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In addition to the mentioned sources of nonlinearity, it is known that, when a structure is excited by one or more 

unbalanced motors, some particular nonlinear effects can take place due to the interaction itself between the exciter 

and the vibrating system [8–11]. The main idea is that, in general, the motion of the unbalanced motor will be 

influenced by the response of the vibrating system, due to the inertia forces that the vibration produces on the 

unbalanced mass [11]. Then, rather than a known excitation acting on the vibrating system, what we generally have is 

a two-way coupling between the motions of the exciter and the structure. In most of the scientific literature, this is 

called a nonideal excitation [12–14], and the associated nonlinear phenomena are usually referred to as The 

Sommerfeld effect [15–17]. Conversely, an excitation is said to be ideal if it remains unaffected by the vibrating 

response.  

After the works of Sommerfeld and Kononenko, many investigations have been conducted in order to better 

understand and predict the effect of nonideal excitations on vibrating systems. 

Rand et al. [19] reported the detrimental effect of a nonideal energy source in dual spin spacecrafts, which could 

endanger a particular manoeuvre of the spacecraft, once placed in orbit. They also designed suitable nonlinear 

controllers to minimize this kind of undesired channelling of energy [20]. 

Although most studies use averaging procedures to obtain approximate solutions to the equations of motion, 

Blekhman [9] proposed an alternative approach, based on the method of ‘Direct Separation of Motions’. 

Several authors, like El-Badawi [16], Bolla et al. [14] and González-Carbajal et al. [11,18], analysed models where 

the vibrating system included an intrinsic cubic nonlinearity, in addition to the nonlinearity associated to the nonideal 

coupling between exciter and structure.  

Balthazar et al. [12] published an extensive exposition of the state of the art concerning nonideal excitations. 

Considering the vibrocompacting machine for quartz agglomerates, it is reasonable to expect that nonlinear effects, 

produced by a nonideal coupling between the vibrating system and the unbalanced motors, are present in the system 

behaviour. The model presented in this paper will allow showing how these phenomena, associated to nonideality of 

the energy source, can affect the result of the compaction process. 

 

Description of the model 

 

The aim of this Section is to present an approximate model which, without intending to give accurate quantitative 

predictions, provides useful qualitative results regarding the vibrocompaction process. This may be seen as a first step 

towards the ambitious goal of achieving a more complex model which reliably captures the dynamics of the real 

system.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Simplified representation of the compacting machine 

 

The simplification carried out can be observed in  

Fig. 1 and Fig. . The former shows a schematic picture of the real machine, while the later displays the approximate 

4-DOF model. The quartz-resin mixture is represented in the model by a couple of masses attached to each other by a 

linear damper and a nonlinear spring, which models the compaction itself by allowing for permanent deformation 

when the spring is compressed. Then, the distance between both masses would represent the thickness of the 

compacting mixture. The mould is modelled as a rigid base, while the piston with the unbalanced motors is 

represented by a mass with a single unbalanced motor. The mixture is in contact –with separations and impacts 

allowed– with the mould at the bottom and with the piston at the top. The vacuum system is not included in the 

model. 
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It should be noted that the model assumes the horizontal motion of the piston to be completely restrained, which 

makes unnecessary to include a couple of motors rotating in opposite directions. 

As represented in Fig. , the model has 4 DOFs: 𝑦𝑏 , 𝑦𝑡, 𝑦𝑝 and 𝜙, which correspond, respectively, to position of the 

bottom of the mixture, position of the top of the mixture, position of the piston and rotation of the motor. 

The parameters represented in Fig.  are as follows: 𝑚𝑚 stands for the mass of the mixture, 𝑚1 is the unbalanced mass, 

𝑚𝑝 is the mass of the piston and the motor, 𝑟 is the eccentricity of the unbalance, 𝐼𝑜 is the rotor inertia, 𝑏 is the 

damping coefficient, 𝐹𝑚 is the force produced by the nonlinear spring and 𝑔 is the gravity constant. 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 
Fig. 2 – 4-DOF model of the vibrocompaction process 

Notice that the total mass of the mixture is distributed in the proposed model in a particular way: one third 

corresponds to the upper mass and two thirds to the bottom mass. In order to understand this feature of the model, 

suppose that, in the real system, the bottom of the mixture is in continuous contact with the mould and, therefore, 

remains at rest during the system vibration. Assume also that the mass of the mixture is uniformly distributed over the 

slab thickness. Then, if the deformation is uniform over the slab thickness as well, the effective mass of the mixture 

during the oscillations can be shown to be one third of its total mass. Note that the assumption of uniform 

deformation is suitable because the mass of the piston is much greater than that of the mixture and, consequently, it is 

reasonable to approximate the deformed shape by that corresponding to a concentrated load on the top surface of the 

slab.  

Obviously, if the top mass contains one third of the total mass of the mixture, there have to be two thirds at the 

bottom mass: when there are separations between mixture and mould and between mixture and piston, it must be the 

total mass of the slab which moves freely. 

The driving torque provided by the motor minus the losses torque due to friction at the bearings and windage is 

assumed to be a linear function of the rotor speed: 

 

𝐿𝑚(�̇�) = 𝐴 + 𝐷�̇�, (1)  

 

with 𝐴 > 0, 𝐷 < 0. 

 

The equations of motion of the system can be obtained by either equilibrium considerations or any other analytical 

mechanics approach like Lagrange’s method or Hamilton’s principle: 

 

{
  
 

  
 
(𝑚𝑝 +𝑚1)�̈�𝑝 = 𝑚1𝑟(�̇�

2 cos 𝜙 + �̈� sin𝜙) + 𝐹𝑐𝑡 − (𝑚𝑝 +𝑚1)𝑔
𝑚𝑚

3
�̈�𝑡 + 𝐹𝑚 + 𝑏(�̇�𝑡 − �̇�𝑏) = −𝐹𝑐𝑡 −

𝑚𝑚

3
𝑔

2𝑚𝑚

3
�̈�𝑏 − 𝐹𝑚 − 𝑏(�̇�𝑡 − �̇�𝑏) = 𝐹𝑐𝑏 −

2𝑚𝑚

3
𝑔

𝐼�̈� = 𝐿𝑚(�̇�) + 𝑚1𝑟 sin𝜙 (�̈�𝑝 + 𝑔) }
  
 

  
 

, (2)  
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where 𝐼 ≡ 𝐼0 +𝑚1𝑟
2 and 𝐹𝑐𝑏, 𝐹𝑐𝑡 represent the normal contact force between mixture and mould and between 

mixture and piston, respectively. Clearly, the most challenging features of this model are the behaviour of the 

nonlinear spring and the computation of the contact forces. System (2), together with the definition of the spring force 

and the contact forces given in the following, constitutes the proposed model for the compacting machine. 

A Hunt and Crossley nonlinear contact model of the form   

 

𝐹𝑐 = 𝑘𝑐𝛿
𝑛 + 𝑏𝑐𝛿

𝑝�̇�𝑞 , 
 

(3)  

Is used, where it is standard to set 𝑛 = 𝑝, 𝑞 = 1. Note that the damping term depends on indentation, which is 

physically sound, since plastic regions are more likely to develop for larger contact deformations. Moreover, the 

contact force does not exhibit discontinuous changes at the impact and separation instants, thereby overcoming one of 

the main problems of the spring-dashpot model.  

 

Numerical results 

 

In this section, system (2) is numerically solved for different scenarios. The chosen initial conditions for all the 

simulations correspond to the static equilibrium position of the system: 

 

{
 
 
 
 

 
 
 
 

𝜙(0) = 𝜋  

�̇�(0) = 0

𝑦𝑏(0) = 𝑑𝑏
�̇�𝑏(0) = 0

𝑦𝑡(0) = 𝑑𝑏 + 𝐿0 + 𝑑𝑠𝑡
�̇�𝑡(0) = 0

𝑦𝑝(0) = 𝑑𝑏 + 𝐿0 + 𝑑𝑠𝑡 + 𝑑𝑡
�̇�𝑝(0) = 0 }

 
 
 
 

 
 
 
 

, 

 

(4)  

where 𝑑𝑡 and 𝑑𝑏 are the indentations at the top and bottom contacts, respectively, due to the weight of the elements 

above the contact. 

With this initial configuration, system (2) is solved, using embedded Runge-Kutta formulae of orders 4 and 5, for a 

simulation time 𝑡𝑓 which varies between 30𝑠 and 55𝑠. This total time includes three different stages in the 

simulation, of respective lengths 𝑡1, 𝑡2 and 𝑡3 (𝑡𝑓 = 𝑡1 + 𝑡2 + 𝑡3): 

- During the first stage (0 ≤ 𝑡 < 𝑡1) parameter 𝐴 is linearly increased from 𝐴0 to 𝐴𝑓, with 𝐴0 and 𝐴𝑓 being defined 

for each particular simulation. The slope 𝐷 is kept constant along the process, which implies that the motor 

characteristics is displaced parallel to itself. Then, at this stage, the motor is being controlled as in Sommerfeld’s 

experiment. 

- At the second stage (𝑡1 ≤ 𝑡 < 𝑡1 + 𝑡2), parameter 𝐴 is kept constant at its final value 𝐴𝑓. During this stage, the 

machine is expected to reach a stationary operating point. 

- At time 𝑡 = 𝑡1 + 𝑡2, the motor is switched off in order to let the system reach a compacted equilibrium position.  

Clearly, once the motor is switched off, there is no driving torque on the rotor, and function 𝐿𝑚(�̇�) must only account 

for the resisting torque due to windage and friction at the bearings. This is modelled by replacing the motor 

characteristic with the following curve: 

 

𝐿𝑚(�̇�) = 0.2 ∙ 𝐷�̇�, for  𝑡1 + 𝑡2 ≤ 𝑡 < 𝑡𝑓 . 

 
(5)  

Hence it is being assumed that the slope of the resisting torque curve is 20% of the slope of the motor characteristic. 
Parameters 𝑡2 and 𝑡3 have been chosen as 15𝑠 for all the simulations, while 𝑡1 will take different values depending on 

the case under study. 

 

The proposed model (2) is defined by 11 dimensional parameters 

 

{𝑚1, 𝑚𝑝, 𝑚𝑚, 𝑏, 𝑟, 𝐼0, 𝑑𝑓 , 𝐹𝑓 , 𝑅𝑘, 𝑘𝑐, 𝑏𝑐}, 

 
(6)  

besides the two parameters associated to the motor control 

 

{𝐴, 𝐷}. (7)  
For this first simulation, the set of parameters (6) is chosen as 
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{
 
 

 
 𝑚1 = 20kg, 𝑚𝑚 = 240kg, 𝑚𝑝 = 1.5 ∙ 103kg 

𝑟 = 0.1m, 𝐼0 = 0.84kgm
2, 𝑏 = 4 ∙ 103 Ns m⁄

𝑑𝑓 = −0.1m, 𝐹𝑓 = −1 ∙ 10
5N, 𝑅𝑘 = 0.1 

𝑘𝑐 = 3 ∙ 10
9 N m⁄ , 𝑏𝑐 = 9.5 ∙ 10

6 Ns m⁄
 
}
 
 

 
 

. 

 

(8)  

Before the numerical resolution of the equations of motion, it is useful to obtain some previous information about the 

system. First, from the knowledge of parameters {𝑑𝑓 , 𝐹𝑓 , 𝑅𝑘}, stiffnesses 𝑘0 and 𝑘𝑓 can be computed as: 

𝑘0 = 1.82 ∙ 105 N m⁄ , 𝑘𝑓 = 1.82 ∙ 106 N m⁄  

 
(9)  

The, the initial stiffness for the dynamic process can also be obtained, together with the static compaction: 

 

𝑘𝑠𝑡 = 7.39 ∙ 10
5 N m⁄ ⇒ 𝛾𝑠𝑡 = 34.1%. 

 
(10)  

A numerical experiment is carried out now, where the motor control parameters are chosen as 𝑡1 = 10s, 𝐷 =
−5Nms, A0 = 20Nm, A𝑓 = 140Nm. 

 

The results of the simulation are represented in Fig. 3 and Fig. . 

 

 
Fig. 3 Piston displacement 

 

It is observed in Fig. 3 that, as the motor curve is displaced upwards between 0 and 10s, the oscillation amplitude 

grows monotonically, until a point where a jump phenomenon is encountered. After the jump, the system clearly 

reaches a post resonant state of motion, as shown in Fig. , where 𝜔𝑛𝑝 represents the natural frequency of the system 

during the stationary motion of stage 2.  

The jump phenomenon encountered here clearly resembles the Sommerfeld effect explained in the introduction. 

However, it might be somehow different to the general phenomenon since no clear slowing down in the increase of 

the rotor speed is observed in Fig. . This is probably due to the additional complexity of the vibrocompaction.   

 

 
 

Fig. 4 Rotor speed  

 

Note the difference between the initial and final position of the piston in Fig. 3, which reveals the compaction due to 

vibration. Regarding the top and bottom contacts, no separations or impacts were found in this case. Hence the 

displacements of the mixture, which do not give much significant information, have not been represented. 
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Conclusions 

 

A novel nonlinear model for the vibrocompaction of quartz agglomeartes is proposed in this work. As far as the 

authors know, this is the first attempt to model this industrial process by using nonlinear systems analysis techniques, 

including both perturbation and averaging technics. In addition, by numerically solving the equations of motion for 

several sets of parameters, the effect of different parameters of the process in the final level of compaction achieved is 

investigated. 
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