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Summary. Using our bifurcational geometric approach, we solve the problem on the maximum number and distribution of limit cycles
in the Kukles system representing a planar polynomial dynamical system with arbitrary linear and cubic right-hand sides and having an
anti-saddle at the origin. We also apply alternatively the Wintner–Perko termination principle to solve this problem.

Global bifurcations of limit cycles

We study the Kukles cubic system

ẋ = y, ẏ = −x+ δy + a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3. (1)

I. S. Kukles was the first who began to study (1) solving the center-focus problem for this system in 1944: he gave the
necessary and sufficient conditions for O(0, 0) to be a center for (1) with a7 = 0 [8]. Later, system (1) was studied by
many mathematicians. For example, in [9] the necessary and sufficient center conditions for arbitrary system (1), when
a7 6= 0, were conjectured. In [11], global qualitative pictures and bifurcation diagrams of a reduced Kukles system
(a7 = 0) with a center were given. In [12], the global analysis of system (1) with two weak foci was carried out. In [13],
the number of singular points under the conditions of a center or a weak focus for (1) was investigated. In [14], new
distributions of limit cycle for the Kukles system were obtained. In [10], an accurate bound of the maximum number of
limit cycles in a class of Kukles type systems was provided.
In [2], we constructed a canonical cubic dynamical system of Kukles type and carried out the global qualitative analysis
of a special case of the Kukles system corresponding to a generalized cubic Liénard equation. In particular, it was shown
that the foci of such a Liénard system could be at most of second order and that such system could have at most three limit
cycles in the whole phase plane. Moreover, unlike all previous works on the Kukles type systems, global bifurcations of
limit and separatrix cycles using arbitrary (including as large as possible) field rotation parameters of the canonical system
were studied. As a result, a classification of all possible types of separatrix cycles for the generalized cubic Liénard system
was obtained and all possible distributions of its limit cycles were found.
Applying Erugin’s two-isocline method [1] and studying the rotation properties of all the parameters of (1), we prove the
following theorem.

Theorem 1. Kukles system (1) with limit cycles can be reduced to the canonical form

ẋ = y, ẏ = q(x)+(α0 − β + γ + β x+ α2 x
2) y+(c+ dx) y2 + γ y3, (2)

where
1) q(x) = −x+ (1 + 1/a)x2 − (1/a)x3, a = ±1,±2 or
2) q(x) = −x+ b x3, b = 0,−1, or
3) q(x) = −x+ x2;
α0, α2, γ are field rotation parameters and β is a semi-rotation parameter.

Using system (2) and studying global bifurcations of its limit cycles, by means of our bifurcational geometric approach
developed in [3]–[7], we prove the following theorem.

Theorem 2. Kukles cubic system (1) can have at most four limit cycles in (3 :1)-distribution.

Application of the Wintner–Perko termination principle

For the global analysis of limit cycle bifurcations in [1], we used the Wintner–Perko termination principle which connects
the main bifurcations of limit cycles. Let us formulate this principle for the polynomial system

ẋ = f(x,µ), (3)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial vector function).

Theorem 3 (Wintner–Perko termination principle). Any one-parameter family of multiplicity-m limit cycles of rela-
tively prime polynomial system (3) can be extended in a unique way to a maximal one-parameter family of multiplicity-m
limit cycles of (3) which is either open or cyclic.
If it is open, then it terminates either as the parameter or the limit cycles become unbounded; or, the family terminates
either at a singular point of (3), which is typically a fine focus of multiplicity m, or on a (compound ) separatrix cycle of
(3), which is also typically of multiplicity m.
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The proof of the Wintner–Perko termination principle for general polynomial system (3) with a vector parameter µ ∈ Rn

parallels the proof of the planar termination principle for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (4)

with a single parameter λ ∈ R; see [1]. In particular, if λ is a field rotation parameter of (3), it is valid the following
Perko’s theorem on monotonic families of limit cycles.

Theorem 4. If L0 is a nonsingular multiple limit cycle of (4) for λ = λ 0, then L0 belongs to a one-parameter family of
limit cycles of (4); furthermore:
1) if the multiplicity of L0 is odd, then the family either expands or contracts monotonically as λ increases through λ 0;
2) if the multiplicity of L0 is even, then L0 bifurcates into a stable and an unstable limit cycle as λ varies from λ 0 in one
sense and L0 disappears as λ varies from λ 0 in the opposite sense; i. e., there is a fold bifurcation at λ 0.

Using Theorems 3 and 4, we give an alternative proof of Theorem 2 for system (1), namely, we prove the following
theorem.

Theorem 5. There exists no system (1) having a swallow-tail bifurcation surface of multiplicity-four limit cycles in its
parameter space. In other words, system (1) cannot have either a multiplicity-four limit cycle or four limit cycles around
a singular point, and the maximum multiplicity or the maximum number of limit cycles surrounding a singular point is
equal to three. Moreover, system (1) can have at most four limit cycles with their only possible (3 :1)-distribution.
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