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Summary. A common approach to studying high-dimensional systems with emergent low-dimensional behavior is based on lift-
evolve-restrict maps (called equation-free methods): first, a lifting operator maps low-dimensional coordinates into the high-dimensional
space, then the high-dimensional (microscopic) evolution is applied for some time, and finally a restriction operator maps down into a
low-dimensional space again. We prove convergence of implicit equation-free methods for sufficiently large healing time. In contrast to
previous results, our result does not require the time scale separation to be large. The results are demonstrated with Michaelis-Menten
kinetics and a low-dimensional stochastic differential equation.

Dynamical systems with time scale separation have been studied for a long time with different methods with the aim to
reduce the complexity of a high-dimensional (also called microscopic) system to a relatively simple low-dimensional (also
called macroscopic) system. The justification for this reduction is simplest if the underlying dynamical system possesses
a low-dimensional attracting slow manifold. After reduction, the long-term dynamics of the system can be analyzed on
the slow manifold. There exists a range of well-established numerical methods (so-called equation-free methods) that
avoid the explicit derivation of a macroscopic system by obtaining the required information from simulations [3, 4, 5].
The unknown macroscopic dynamics is evaluated by using a wrapper around existing microscopic simulators to achieve
a closure on demand. The assumption behind equation-free computations is the existence of a time scale separation
with a slow low-dimensional description (in Rd) for some macroscopic quantities of the high-dimensional microscopic
system (which is defined in RD). The framework also relies on the availability of a microscopic time stepper (a map
M(δ; ·) : RD 7→ RD) and two user-defined operators, the lifting L : Rd 7→ RD and the restriction R : RD 7→ Rd, which
are maps between the original high-dimensional (RD) microscopic level and the low-dimensional (Rd) macroscopic level.
The goal is to compose a macroscopic time stepper Φ∗(δ; ·) : Rd 7→ Rd, which is then amenable to higher-level tasks
like a macroscopic bifurcation analysis of microscopic models. The central building block of equation-free methodology
is the “lift-evolve-restrict” map R ◦M(δ; ·) ◦ L: for a given value x ∈ Rd of macroscopic quantities, one first applies
the lifting L to x getting a microscopic state u, then one runs the simulation for time δ starting from u (applying the
microscopic evolution M(δ;u)), and finally one applies the restrictionR to the result M(δ;u).

Figure 1: Geometry of lift-evolve-restrict map near slow mani-
fold: macroscopic value x gets lifted to L(x), then evolved to
M(δ;L(x)), then restricted back toR(M(δ;L(x)) ∈ Rd. The aim
is to approximate the slow flow x 7→ (g ◦ L)−1 ◦M(δ; g(L(x)))
using this map R ◦ M(δ; ·) ◦ L, and assuming invertibility of
g ◦ L : Rd 7→ C.

Assuming that the D-dimensional microscopic problem has a d-dimensional attracting invariant slow manifold C, one
faces the geometric difficulty, illustrated in Fig. 1, that in general the lift-evolve-restrict map will not be compatible with
the stable fibers of the slow manifold C. More precisely, after lifting x ∈ Rd to L(x) ∈ RD, the slow flow is effectively
applied to a different point, g ◦ L(x), which is the projection of L(x) onto the slow manifold C along the stable fibers.
Thus, in the limit of infinite time-scale separation the dynamics of the lift-evolve-restrict map P (t; ·) = R ◦M(δ; ·) ◦ L
is a small perturbation of the mapR◦ g ◦ L. A faithful representation of the slow flow Φ∗(δ; ·), using the coordinate x in
the domain of the lifting L and the map g ◦ L : domL 7→ C, mapping onto the manifold C,

y∗ = Φ∗(δ;x) = (g ◦ L)−1 ◦M(δ; ·) ◦ g ◦ L(x), (1)

(using the notation (·)−1 for the inverse map) is given by the implicit definitionR ◦ g ◦ L(y∗) = R ◦M(δ; ·) ◦ g ◦ L(x).
This definition is impractical since the nonlinear projection g and the slow manifold C are both unknown in general. One
approach to overcome this problem is to introduce a healing time tskip, exploiting thatM attracts along the fibers [5, 1]. In
our previous work [6] it is shown that the healing time tskip can be justified by introducing an additional shift M(tskip; ·)
and its inverse into (1) (note that M(tskip; ·) is invertible on the slow manifold C):

y∗ = Φ∗(δ;x) = (g ◦ L)−1 ◦M(tskip; ·)−1 ◦M(δ + tskip; ·) ◦ g ◦ L(x). (2)

Removing the inverses in (2) leads to an implicit equation for y∗ = Φ∗(δ;x) with the healing time tskip as an parameter:

R ◦M(tskip; ·) ◦ g ◦ L(y∗) = R ◦M(δ + tskip; ·) ◦ g ◦ L(x)
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Figure 2: Michaelis-Menten dynamics. (a) Phase space representation of dynamics for various initial conditions (crosses) which is very
quickly approaching the slow manifold (black line) and evolves on much slower time scale. The final states for t = 100 are denoted
by a red point. (b) Error as function of tskip. (c,d) Same analysis for the rotated system where for our choice of lifting the degenerate
situation that the stable fiber projection g is aligned with lifting and restriction is avoided. The initial large error in the flow of size 1
can be significantly reduced to an order of 10−8 for a larger healing time.

Replacing M(tskip; ·)◦g with M(tskip; ·) results in a computable approximation ytskip = Φtskip(δ;x) of y∗, given implic-
itly by the equation

R(M(tskip;L(ytskip))) = R(M(δ + tskip;L(x))). (3)

This approach was analyzed and illustrated in a traffic model in [6] and will also be studied here. We proved in [6] that
the approximation ytskip is exponentially accurate if dtan/dtr → 0: ‖ytskip − y∗‖ ∼ exp(−Kdtr/dtan) (for some constant
K depending on tskip). The error estimates in [6] requires that tskipdtan/dtr and (tskip + δ)dtan/dtr stay bounded from
above such that the convergence result is about the limit of infinite time scale separation dtan/dtr → 0, similar to the
results for constrained runs schemes [2, 8, 9]. The analysis left open if the error goes to zero for tskip → ∞ but finite
timescale separation: dtan/dtr ∈ (0, 1).
We will present the general a-priori error estimate that ‖ytskip − y∗‖ ∼ exp((dtan − dtr)tskip) for tskip → ∞ and fixed
dtan < dtr under some genericity conditions on R and L. We will also give a convergence result for the derivatives of
ytskip with respect to its argument x: ‖∂jytskip − ∂jy∗‖ ∼ exp(((2j + 1)dtan − dtr)tskip) if (2j + 1)dtan < dtr. An
illustration is given in Fig. 2 for the Michaelis-Menten kinetics.
Equation-free analysis based on lift-evolve-restrict maps is more commonly applied to problems that are assumed to
have a fast subsystem, where the fast time scale converges only in a statistical sense to a stationary measure conditioned
on the slow variables, approximated by Monte Carlo simulations on ensembles of initial conditions. Barkley et al [1]
investigated the behaviour of the lift-evolve-restrict map P (δ; ·) = R◦M(δ; ·) ◦L where the slow variables were leading
moments (thus, P was called moment map in [1]) on prototype examples from the class of stochastic problems. The
simplest example from [1] is a scalar stochastic differential equation (SDE), for which the evolution is governed by the
(linear) Fokker-Planck equation (FPE) for the probability distribution and, hence, the measure of time-scale separation is
the size of the spectral gap in the right-hand side of the FPE. The analysis in [1] found that the dynamics of the map P
was qualitatively different from the dynamics of the underlying FPE. For example, P was nonlinear and metastable states
were stabilized for certain choices of δ.
We will demonstrate for two different lifting operators L that the approximation ytskip , defined by (3), behaves exactly
as predicted by the presented convergence theorem. In particular, it preserves the metastability features and the linearity
of the flow generated by the FPE. A detailed discussion will be given about the differences between observations of the
behaviour in the SDE and the predictions from the theoretical result. These are caused by the numerical errors in the
evaluations of lifting, evolution and restriction and their growth along trajectories.
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