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Summary. In this study, we investigate the forced vibrations of a string in the presence of a smooth unilateral obstacle. This problem
is of central importance to Indian string musical instruments like Tanpura and Sitar. The mathematical model is developed using
Hamilton’s principle followed by system discretization using the Galerkin projection approach. In particular, we explore different
types of motions in mutually perpendicular directions and study the coupling between them. Finally, we study the stability of periodic
motions and investigate the effect of system parameters on the stability.

Introduction

Earlier theoretical studies [1, 2, 3] investigated the free vibrations of a string in the presence of a boundary obstacle. The
analysis revealed that only one planar motion is possible. This planar motion is stable for small amplitude of vibrations
and it becomes unstable beyond a certain critical amplitude. However, there are numerous studies [4, 5] exploring the
nonlinear dynamics for the forced vibrations of a string in the absence of an obstacle. The role of the obstacle on the
nonlinear aspects of the string vibrations is still unexplored. In the present study, we investigate the string vibrations with
distributed unidirectional periodic force in the presence of an obstacle.

Problem Formulation

A schematic representation of the system under consideration is shown in figure 1. The source of nonlinearity in our
system is assumption of variable tension along the string and presence of finite curved obstacle. The mathematical model
incorporating non-planar motions and moving boundary is developed. We further assume that the string remains tangent
to the obstacle surface at the point of separation (X = Γ(t)) in figure 1. The equations of motion of our system are
nonlinear coupled PDEs (not shown), governing the motions in mutually perpendicular directions, which are discretized
using Galerkin projection approach.
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Figure 1: A Schematic representation of our system

Observations

Firstly, we study the string vibrations due to distributed periodic forcing in Y -direction. We observe that the trivial (all
zeros) initial condition leads to periodic modulations in the X−Y plane. However, trivial initial condition corresponding
to forcing in the Z-direction leads to periodic modulation in both Y and Z-direction. This indicates that there is a
possibility of only one planar motion. We also observe that a perturbation perpendicular ( α modulation) to the planar
motion decays below a certain frequency as shown in figures 2A and 2B. On the contrary, this perturbation grows and
reaches a steady state giving rise to periodic nonplanar motions beyond a certain critical frequency as shown in figures 2C
and 2D. The value of the critical frequnecy in our case comes out to be 3.36.
Below the critical frequency, the periodic solutions correspond to the planar motions only as shown in figure 3. Above
the critical frequency, the periodic solutions correspond to the planar as well as nonplanar motions as shown in figure 3.
The planar motions below the critical frequency are stable. This branch of planar motions becomes unstable beyond the
critical frequnecy. Moreover, two stable branches of nonplanar motion originate just after the critical frequency. There is
a another pair of unstable branches of the nonplanar motions which exists in the region above the critical frequency. In
the region beyond the critical frequency, there exists both stable planar branch and stable nonplanar branch.
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Figure 2: Representation of stability of the planar motion. Figures A and B represent the α and β modulations corresponding to forcing
frequency (Ω)= 3.2. Figures C and D represent the α and β modulations corresponding to Ω = 3.4. Note: We have included a very
small magnitude of modal damping to eliminate the transient response.

Future Directions

We have discussed the qualitative change in the nature of solutions depending on the forcing frequency keeping the other
parameters as constant. Similar analysis can also be performed with different values of other parameters. Furthermore, the
effect of friction between the string and the obstacle will be reported in our future study. It will be interesting to determine
the response due to distributed forcing in the Z-direction. We will also analyze the string vibrations under periodic force
limited over space and time to mimic the actual playing of Tanpura and Sitar.

Figure 3: Amplitude versus frequency representation for the periodic solutions. Left: The critical frequency corresponding to the onset
of periodic nonplanar solutions is 3.36. Right: Zoomed view of the rectangular portion demarcated in the left plot. (P1, 0), (P3, P8),
(P10, P13), and (P11, 0) are stable solutions. (P4, P5), (P2, P6), (P7, 0), (P9, 0), (P12, 0) and (P14, 0) are unstable solutions.
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