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Dynamics of the basketball rolling along the rim
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Summary. The dynamics of a basketball is investigated which is rolling on the basketball rim. By assuming rigid bodies, the motion is
described by a set of four first-order differential equations. The stationary solutions are determined, which describe the stationary rolling
of the ball along the circumference of the rim. For the non-stationary solutions, numerical simulations are performed to determine
whether the ball falls from the rim inside or outside the basket.

Introduction

It can be seen often during basketball games that the ball starts rolling around and around the rim, and it is quite unpre-
dictable whether the ball falls down inside or outside the basket. Dynamics of the ball has been investigated from different
approaches (see [1], [2]), and the system has many similarities with the motion of golf ball [3]. In this work, a simple
model is presented by assuming rigid bodies and rolling contact, which is capable to find and analyse the special motions
related to the rolling of the ball around the circumference of the rim.

Mechanical model

The basketball is modelled by a rigid sphere and the rim is modelled by a rigid torus (see Figure 1). The ball has a radius
R, a mass m and a mass moment of inertia jmR2, where j = 2/3 is assumed as the mass of the ball is distributed on its
surface. The basketball rim has radii R and r and its thickness is a. The gravitational acceleration is denoted by g.

Figure 1: Sketch of the mechanical model.

Equations of motion

The components of the angular velocity of the ball are considered in a coordinate system fixed to the tangent plane of
the ball at the contact point (see Figure 1). The transverse angular velocity is denoted by ω1, which component shows
the rotation of the ball around the axis tangent to the rim. The spinning angular velocity is denoted by ω2. The circular
angular velocity is denoted by ω3 which expresses the rotation of the ball related to the motion around the circumference
of the rim. The tilt angle of the ball around the rim is denoted by β, where the value β = π/2 corresponds to the position
of the ball on the top of the rim. By assuming that the ball is rolling, it can be derived that the equations of motion of
system are

ω̇1 =
(1 + j)rω2

3 sinβ − jrω2ω3 cosβ

(1 + j)(R− (a+ r) cosβ)
− g cosβ

r(1 + j)
,

ω̇2 =
rRω1ω3

(a+ r)(R− (a+ r) cosβ)
,

ω̇3 = − rω1ω3 sinβ

R− (a+ r) cosβ
− jrω1ω2

(a+ r)(1 + j)
,

β̇ =
r

a+ r
ω1.

(1)

Due to the symmetries of the geometry, the orientation of the ball and the position of the ball around the circumference do
not effect the dynamics of the other variables. By assuming a+ r < R, the system (1) is a smooth vector field in the four
dimensional phase space (ω1, ω2, ω3, β) ∈ R3 × [−π, π). The system (1) itself is nonlinear, but further nonlinearities are
caused by slipping of the ball or falling from the rim.
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Analysis of stationary solutions

It can be determined that the system (1) has not an isolated stationary solution but a two-parametric family of stationary
solutions in the form

ω1 ≡ 0, ω2 ≡
(1 + j)r2ω2

30 sinβ0 − g cosβ0(R− (a+ r) cosβ0)

(1 + j)(R− (a+ r) cosβ0)jr2ω30 cosβ0
, ω3 ≡ ω30, β ≡ β0. (2)

That is, for any chosen tilt angle β0 6= ±π and circular angular velocity ω30 6= 0, there is a spinning angular velocity
ω20(β0, ω30) for which (0, ω20(β0, ω30), ω30, β0) is a stationary solution of (1). Note that stationary solutions are not
related mechanical equilibrium but the ball is rolling around the circumference of the rim at a constant tilt angle β0 and it
is rotating with constant circular and spinning angular velocities.
From (2), a subset of the stationary solutions are not realizable because it would require negative normal force between
the ball and the rim. In the left panel of Figure 2, the shaded area shows the realizable stationary solutions with positive
normal force and the white area correspond to the case when the ball falls down from the rim. Checking the condition of
slipping from the Coulomb friction model leads to a similar but stricter condition than that of the falling of the ball. A
further practical restriction is the limited kinetic energy of the ball from the shot.

Figure 2: Conditions of the realisable stationary motions. Each point of the plane correspond to a stationary motion according to (2).
Left panel: the shaded area shows the solutions which the ball does not fall from the rim. Right panel: the shaded area show the
solutions which are stable. The numerical values of the parameters are the values of the standard basketball and basketball rim.

Linear stability analysis shows that some of the stationary solutions are unstable with a positive real eigenvalue. This
corresponds to the white region in the right panel of Figure 2. For stationary solutions inside the shaded region of this
diagram, there is a double zero eigenvalue and a pair of pure imaginary eigenvalues. Further analysis shows that these
solutions are stable but not asymptotically stable, and the trajectories in the vicinity of these stable stationary points are
periodic.

Determining falling of the ball by numeric simulation

By neglecting the dissipative effects, a general initial condition of (1) leads to one of the following types of trajectories:
1. the ball remains on the rim permanently,
2. the ball falls from the rim inside the basket,
3. the ball falls from the rim outside the basket,
4. the ball falls from the rim in such direction that it hits the rim again.

Points of the phase space can be categorised into these four categories. By performing numeric simulations, these four
regions can be visualised, which results complicated patterns. If small energy dissipation is introduced into the model
then the first category vanishes, and the ball can either fall outside or inside the basket. Solutions of the fourth category
leads also falling inside or outside, but it needs the analysis of the impact between the ball and the rim. Solutions can
be also categorised according to the time which is necessary for the ball to leave the rim. The solutions of the longest
time are close to the stable stationary solutions when the ball is rolling around the rim several times. Sensitivity on initial
conditions demonstrates the unpredictable behaviour of the ball in practical situations.
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