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Parameter estimation for nonsymmetric matrix Riccati differential equations
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Summary. Presented is an efficient method for estimating the parameters of nonsymmetric matrix Riccati differential equations (RDE)
with constant coefficients using finite data. This method utilizes explicit inversion of the solution map and does not require numerical
integration and optimization. It takes advantage of Radon’s lemma which relates a solution of the RDE to a solution of a system of
linear differential equations and a recently developed theory of assessing the uncertainty of solutions of linear dynamical systems.

Introduction

Inital value problems for symmetric and nonsymmetric Riccati differential equations (RDE) appear in many branches of
applied mathematics, for example in variational theory, optimal control and filtering, dynamic programming and differen-
tial games. The most common occurrence is as an intermediate step in the determination of optimal control of a system in
which the state equations are linear in the state and control variables [1], such as in the case of chemostat models [2]. RDE
also constitute a special case of more general Lotka-Volterra systems that are commonly used as models of chemical and
biological systems [3] and have been shown to be universal representatives of systems of ordinary differential equations
with polynomial right-hand sides.

Theory

Consider systems described by the nonsymmetric matrix Riccati differential equation (RDE), i.e.,

Ẋ = −XBX −XA+DX + C, X(0) = X0 (1)

where X(t) ∈ Rm×n is the state of the system at time t, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m are
constant matrix parameters of the system, and X0 is the initial condition. Let M and Y (t) be defined as

M =

(
A B
C D

)
, Y (t) =

(
Q(t)
P (t)

)
where P (t), Q(t) are m× n and n× n matrix valued functions. Classical theory of Radon (see, e.g., [4]) states that any
solution X(t) of (1) is locally equivalent to a solution Y (t) of the linear ODE system

Ẏ = MY (2)

in the sense that

1. If X(t) is a solution of (1) on some open interval J 3 0 and Q(t) is the unique solution of the initial value problem
Q̇ = (A + BX(t))Q, Q(0) = I , then Y (t) with P (t) = X(t)Q(t) is a solution of (2) in the interval J with
Y (0) = (IX0)T .

2. If Y (t) is a solution of (2) on some open interval J 3 0 such that detQ(t) 6= 0 for t ∈ J then P (t)Q−1(t) is a
solution of (1) on the interval J with initial condition X0 = P (0)Q−1(0).

Our goal is to determine the matrix coefficients A,B,C,D from a series of p + 1 observations X0, X1, ..., Xp of the
system made at equally spaced times. This is equivalent to solving a set of equations Xk = X(kh;A,B,C,D) with
k = 1, 2, ..., p, where X(t;A,B,C,D,X0) denotes the solution of the initial value problem (1) and h denotes the
time step, and amounts to inverting the solution map that takes the parameters {A,B,C,D,X0} into the observations
{X0, X1, ..., Xp}. Traditionally, inverse problems for nonlinear dynamical systems are solved by numerical minimization
of the objective function

f(A,B,C,D) =

p∑
k=1

(X(kh;A,B,C,D,X0)−Xk)2

using appropriate optimization algorithms. Among the disadvantages of such methods are a potential poor convergence
rate or convergence to a local optimum. In this work we describe a novel method that combines the equivalent linear
formulation (2) and newly developed procedures for parameter identification of linear systems [5, 6].

Identification of parameters

Given a collection of observations Y0, Y1, ..., Yp of the linear system (2) one can easily determine the matrix of coefficients
M ∈ R(m+n)×(m+n) as follows [6]: (i) Construct the matrices Ȳ0 = [Y0|Y1|...|Yp−1] and Ȳ1 = [Y1|Y1|...|Yp], (ii)
Compute the matrix Φ = Ȳ1Ȳ

−1
0 , and (iii) find M as the real matrix logarithm of Φ, i.e., a solution of the matrix equation

eM = Φ. Results of Culver [7] define under what conditions such a logarithm exists and is unique.



ENOC 2017, June 25-30, 2017, Budapest, Hungary

Now, the knowledge of the dataX0, X1, ..., Xp does not immediately imply the knowledge of Y0, Y1, ..., Yp, since for each
k, Xk only determines the product PkQ

−1
k , whereas Yk = (Qk Pk)T . However, one can utilize the following observation:

By definition, (
Qk+1

Xk+1Qk+1

)
= Yk+1 = ΦYk = Φ

(
Qk

XkQk

)
, k = 0, 1, ..., p− 1 (3)

where Q0 = I . Assume that Qk is invertible for k = 0, 1, ..., p− 1. Then (3) reduces to a system of mnp linear equations
for Φ: (

Xk+1 −I
)

Φ

(
I
Xk

)
= 0, k = 0, 1, ..., p− 1 (4)

The system (4) is homogeneous and hence it specifies Φ only to within a scalar multiple. This corresponds to the fact that
changing A and D to A+αI and D+αI does not alter the solution of (1). Identifiability can be recovered by restricting
the set of permissible M to traceless matrices.

Example

Consider a model of a system with two interacting populations with constant influxes and growth rates that are limited
equally by an environmental stress that depends linearly on the sizes of the populations. The resulting equations can be
written as

ẋ1 = c1 + g1x1 − x1(b1x1 + b2x2)

ẋ2 = c2 + g2x2 − x2(b1x1 + b2x2)

This system can be rewritten as RDE of the form (1) with m = 2, n = 1, X = (x1 x2)T , A = a, B = (b1 b2),
C = (c1 c2)T , and D a diagonal matrix with d11 = g1 + a and d22 = g2 + a. Special case with (b1, b2, c1, c2, g1, g2) =
(0.5, 0.5, 1.5, 0.5, 0.5, 1.0) with initial condition X0 = (0 1)T produces trajectory seen in Figure 1. The system is
uniquely identified with data observed for 5 time points, as indicated.
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Figure 1: Trajectory of x1 (red) and x2 (blue) and calibration data for an example RDE system.

Conclusions

Presented is a procedure for estimation of parameters of nonsymmetric Riccati differential equations using exact data.
This procedure takes advantage of the availability of explicit solutions of the system and avoids complications stemming
from numerical estimation of the parameters for this nonlinear ODE system, such as slow convergence, false convergence
to local optima, etc. Explicit nature of the solution allows for forward and backward error analysis of the problem which
will be forthcoming.
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