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Summary. Two problems related to minisymposium “Random Dynamical Systems erRéalvances and New Directions” will be
discussed: (i) an inverse problem of constructing chemical reactimrories with given dynamical behaviour, including networks with
a specific bifurcation structure or prescribed stochastic (noise-iddilbedaviour; and (ii) the development of multiscale methods for
spatio-temporal modelling of intracellular processes, which use motedytemics simulations in parts of the computational domain
and (less-detailed) stochastic reaction-diffusion approaches in tfzmeen of the domain.

Introduction

In the first part of my talk, | will discuss an inverse problefnconstructing mass-action chemical reaction networks
with given dynamical behaviour. Such constructions arduli$e many application areas. In synthetic biology, such
constructed systems may be used as a blueprint for engigeariificial networks. They also add to the set of test
problems for numerical methods designed for network imfeeefrom data. | will discuss constructions of chemical
reaction networks with both (i) prescribed deterministihaviour (bifurcation structure) and (ii) prescribed &stic
behaviour (including state-dependent fluctuations). Ehisjoint work with D. Anderson, T. PleSa, T. Vejchodsky and K
Zygalakis [1, 2, 3].

In the second part of my talk, | will discuss methods for sp#¢imporal modelling in molecular and cell biology, in-
cluding all-atom and coarse-grained molecular dynamicB)end stochastic reaction-diffusion models, with the aim
of developing and analysing multiscale methods which use di#fBulations in parts of the computational domain and
(less-detailed) stochastic reaction-diffusion appreadh the remainder of the domain. The main goal of this nualtes
methodology is to use a detailed modelling approach in ibedlregions of particular interest (in which accuracy ard m
croscopic details are important) and a less detailed madw#hier regions in which accuracy may be traded for simutatio
efficiency. This is a joint work with E. Rolls and Y. Togashi B! 6].

From dynamicsto reaction networks

Synthetic biology is a growing interdisciplinary field whiaims to design biochemical systems that behave in a desired
manner. With the advancement of strand-displacement DNApeding, a large class of abstract biochemical networks
may be physically realized using DNA molecules [7]. Methéaissystematic design of the abstract systems with pre-
scribed behaviors can be developed at both deterministicstothastic levels. In the former case, a chemical reaction
network is described by a system of ordinary differentialaopns (ODES) for concentrations of chemical specieslewhi

in the latter case, a stochastic simulation algorithm islteevolve numbers of molecules of chemical species ingblve
Stochastic models provide a more detailed understandirigeoflynamics of chemical reaction networks. Such a de-
scription is often necessary for the modelling of biologmgstems where small molecular abundances of some chemical
species make deterministic models inaccurate or even licapte [8].

Considering (less detailed) deterministic models, anrseg@roblem framework for constructing reaction systentk wi
prescribed properties is presented in [1]. Two example®péttucted chemical reaction networks using the framework
are presented in [2]. Both chemical systems are at the diiistio level described by two-dimensional third-degree
kinetic ODEs. The first ODE system undergoes a homocliniarbiftion, with a coexistence of a stable critical point
and a stable limit cycle in the phase plane. The second claésystem is described by kinetic ODEs which undergo a
multiple limit cycle bifurcation, with a coexistence of tvetable limit cycles.

Stochastic effects, neglected at the deterministic lewrel increasingly found to play an important role in biochstnyi

In such circumstances, methods for controlling the inicimoise in the system are necessary for a successful network
design at the (more-detailed) stochastic level. To addtesgproblem, the noise-control algorithm for designing-bi
chemical networks is developed in [3]. The algorithm stuually modifies any given reaction network under mass-actio
kinetics, in such a way that (i) controllable state-dep@ahdeise is introduced into the stochastic dynamics, wiijéhe
deterministic dynamics is preserved. The capabilitiedefdlgorithm are demonstrated on a production-decay oeacti
system, and on an exotic system displaying bistability. tRerproduction-decay system, it is shown that the algorithm
may be used to redesign the network to achieve noise-inducétdstability. For the exotic system, the algorithm is dise

to redesign the network to control the stochastic switchamgl achieve noise-induced oscillations [3].

From molecular dynamicsto whole-cell modelling

MD simulations of molecules in aqueous solutions are lichite modelling processes in relatively small domains con-
taining (only) several thousands of water molecules. Igviells typically consist 0fl0!°-10'2 water molecules. It
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is therefore impossible to use standard all-atom MD modekrhulate whole cell dynamics. In particular, biological
processes which include transport of molecules betweéaréift parts of the cell are usually not described with asicti
level of detail, even when the molecular structure and foncare known for some components of the studied system.
A typical approach in the literature is to design macroscapiatio-temporal models, which can be written, for example
in terms of Brownian dynamics, compartment-based modekc(ion-diffusion master equation) or mean-field partial
differential equations [8, 9].

In [4], a simple and analytically tractable MD model of theahbath is considered. A few heavy particles with maéss
are coupled with a large number of light point particles witassesn < M. The collisions of particles are without
friction, which means that post collision velocities candmenputed using the conservation of momentum and energy.
Let us denote the position and velocity of a heavy particl&Xby= [X§, X5, X5] andV* = [VF, Vs, V5], respectively,
wheree = m/M. Then it can be shown th&*® and V¢ converge in the sense of distribution (weakly) to a suitable
Langevin (stochastic) description in the linsit— 0, provided that the density of point particles and the distion of
their velocities are appropriately scaled withThe limiting Langevin description can be further reduceé Brownian
dynamics model. In [4], these convergence results are usddgign and analyse a multiscale approach in dofain
which can provide MD-level information in a small subdom&ig;p € 2 by coupling MD simulations if2,,;p with a
coarser Brownian dynamics description in the remainden@tbmputational domain.

In this talk, | will consider more complicated MD models thae one studied in [4] which include different descriptions
of the heat bath (water molecules). | will investigate cattioes between MD and coarser stochastic models. | will
discuss the development of efficient multiscale methodshvbbuple MD and coarser stochastic models in the same
dynamic simulation. An example is presented in [5], whereudtistale approach is developed which couples all-atom
MD simulations of ions in water with Brownian dynamics. | ldlso consider multiscale modelling of polymer dynamics,
which allows simulations of localized regions of a polymbeain with high spatial and temporal resolution, while using
a coarser modelling approach to describe the rest of thenmalghain. This approach is applied to modelling of DNA
dynamics in [6].
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