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Summary. With finite difference method, a multi-degree-of-freedom nonlinear stochastic dynamical system is formulated by discretiz-
ing the stretched Euler-Bernoulli beam being of pin-supported ends and excited by uniformly distributed Gaussian white noise. The
probabilistic solutions of this system are studied by state-space-split (SSS) method and exponential-polynomial closure (EPC) method
to examine the effectiveness and efficiency of this solution procedure. Numerical results show that the probabilistic solutions obtained
by SSS-EPC method agree well with Monte Carlo simulation. The computational efficiency of SSS-EPC method is much higher than
that of Monte Carlo simulation. Compared to the probabilistic solutions obtained by equivalent linerization method, the results obtained
by SSS-EPC method are much improved for the studied strongly nonlinear system.

Introduction

The stretched beam can find its applications in science and engineering. There are a lot of publications about the vibra-
tions of the stretched beam. However, there are only few studies about the random vibrations of this beam, particularly
the study on the probabilistic solution of the stretched beam [1, 2]. The random vibration of the stretched beam can
find its applications in the area of seismic analysis and structural reliability analysis. When the beam is discretized by
finite difference scheme for numerical analysis, the formulated system is a multi-degree-of-freedom (MDOF) nonlinear
stochastic dynamical (NSD) system for random vibration analysis. Many real problems can be described as MDOF-NSD
systems. Excited by Gaussian white noise, the probability density function (PDF) of the responses of NSD system is gov-
erned by Fokker-Planck-Kolmogorov (FPK) equation which exact solution is not obtainable for MDOF-NSD systems.
Equivalent linearization method (EQL) was frequently employed to obtain the approximate means and second moments
of the responses of weakly nonlinear systems [3]. Monte Carlo simulation (MCS) is another method that is applicable
for the numerical solution of MDOF-NSD systems, but the computational efficiency, numerical stability, convergence,
round-off error, and requirement for large sample size can be challenges with MCS in analyzing large systems [4, 5].
The state-space-split (SSS) method was proposed for the approximate solutions of the high-dimensional FPK equations
[6, 7]. By the SSS method, the high-dimensional FPK equation is reduced to low-dimensional FPK equations which can
be further solved by the exponential polynomial closure (EPC) method [8]. The whole solution procedure is refereed to as
SSS-EPC method. In this paper, the SSS-EPC method is applied to analyzing the probabilistic solutions of the stretched
Euler-Bernoulli beam excited by uniformly distributed Gaussian white noise. The MDOF-NSD system is formulated by
discretizing the stretched beam with finite difference scheme. The objective of this study is to examine the effectiveness
and efficiency of the SSS-EPC method in analyzing the probabilistic solutions of the presented beam system.

Probabilistic Solutions of Stretched Beam

Consider the Euler-Bernoulli beam with pin supports at its two ends and excited by uniformly distributed Gaussian white
noise as shown in Fig. (1). The governing equation of this beam is

ρŸ (x, t)+ Ẏ (x, t)+EIY (4)(x, t)− EA
2L

Y ′′(x, t)
∫ L

0
Y ′2(x, t)dx = qW (t) (1)

where Y (x, t) is the deflection of the beam at time t at the location with distance x from the left-hand side of the beam;
ρ is the mass density of the material; c is the damping constant; E is the Young’s modulus of the beam material; I is
the moment inertia of the cross section of the beam; A is the area of the cross section of the beam; L is the length of the
beam; qW (t) is the uniformly distributed loading laterally applied on the beam, q is a constant and W (t) is Gaussian white
noise with power spectral density S. With finite difference scheme as shown in Fig. (1), Eq. (1) can be discretized into the
following system.
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W (t) (n = 1,2, ...,N) (2)

where α = EI
h4ρ and β = EA

24Lh3ρ . The boundary conditions are Y ′0 = 0 and Y ′N+1 = 0, which gives Y0 = 0,YN = 0,Y−1 =−Y1

and YN+2 = −YN . Eq. (2) is a MDOF-NSD system excited by Gaussian white noise. Give L = 5m, E = 2.1× 1011 pa,
I = 2.17×10−4m4, A = 8.6×10−3m2, ρ = 7.85×103kg/m3, c = 103, and qW (t) = 104W (t)N/m with S = 5. The number
of unknowns N in finite difference scheme is set to be 7. Based on Eq. (2), the PDFs of the deflection in the middle of
the beam Y (0.5L, t) (or Y4) and velocity Ẏ (0.5L, t) (or Ẏ4) are analyzed by SSS-EPC method when the polynomial degree
n equals 4 in the EPC procedure. The PDFs and logarithm of PDFs of Y4 and Ẏ4 obtained by SSS-EPC, MCS, and EQL,
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Figure 1: Finite difference model of the Euler-Bernoulli beam with pin supports at its two ends and excited by uniformly distributed
Gaussian white noise

respectively, are shown and compared in Figs. 2(a) and 2(b), respectively. The number of samples used in MCS is 108. It
is seen from the numerical figures that the results obtained by SSS-EPC method are close to MCS while those obtained by
EQL deviate a lot from MCS. Under the same computer running environment, the computational time needed by MCS is
about 1,000 times of that needed by SSS-EPC method for this 7-DOF system. The value of this ratio can increase rapidly
as the number of system degrees of freedom increases.
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(a) Frequency response curve with f = 1000
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(b) Time history with Ω = 15 rad/s

Figure 2: a) PDFs of displacement in the middle of the beam; (b) Logarithm of PDFs of displacement in the middle of the beam.

Conclusions

The SSS-EPC method is studied in analyzing the probability density functions of responses of the stretched Euler-
Bernoulli beam. The MDOF-NSD system about the nonlinear random vibration of the beam is formulated by finite
difference scheme. Numerical results are presented about the probabilistic solutions of the beam with pin supports at
its two ends and excited by uniformly distributed Gaussian white noise which is fully correlated in space. By SSS-EPC
method, the obtained PDFs of the deflection of the beam are close to MCS even in the tails of the PDF solutions. The
numerical analysis shows that the SSS-EPC method works for accurately and efficiently analyzing the probabilistic solu-
tions of the stretched Euler-Bernoulli beam excited by uniformly distributed Gaussian white noise when the MDOF-NSD
system governing the nonlinear random vibration of the stretched beam is formulated with finite difference scheme.
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