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Summary. This paper deals with the fascinating phenomenon of interference of two nonlinear fluid-elastic phenomena, viz. vortex-
induced vibration (VIV) and transverse galloping. The resulting phenomenon, which one may call “unsteady galloping”, occurs in the
case of low-damped rectangular cylinders with a side ratio comprised between about 0.75 and 3. The results of a wide experimental
campaign carried out in the wind tunnel on a rectangular 3:2 cylinder (having the short side perpendicular to the flow) are discussed here,
with a special focus on the role played by the mass-damping parameter of the oscillating body. Moreover, the problem is analytically
addressed through an existing nonlinear wake-oscillator model, which has been modified in the present work, especially concerning the
setting of a key parameter, obtaining previously unexplored solutions of the equations. The model was found to reproduce correctly
several features of the complicated phenomenon, shedding some light on the mechanism of unsteady galloping. Finally, the nonlinear
behavior of the wake has also been discussed.

Introduction

Vortex-induced vibration (VIV) and transverse galloping are well-known nonlinear phenomena characterizing slender
bluff bodies immersed in a flow stream. The former is a high-reduced frequency excitation triggered by vortex resonance,
whilst the latter is generally a low-reduced frequency instability addressed with the well-established quasi-steady theory
[1]. Nevertheless, as first noticed by Parkinson and Wawzonek [2], then by Bearman et al. [3], and recently extensively
discussed in [4, 5], if the mass-damping parameter (often called Scruton number) is low enough, the ranges of excitation
of the two phenomena tend to approach, and a peculiar type of instability occurs, with important implications from the
engineering point of view [4, 6], since large-amplitude vibrations are observed in flow-speed ranges wherein no excitation
is predicted by the classical theories of VIV and galloping. In particular, this has been observed for rectangular cylinders
with a cross-sectional side ratio comprised between about 0.75 and 3 [7].
In the present work, a rectangular cylinder with a side ratio of 1.5 (having the short side perpendicular to the flow) has
been the object of an extensive experimental and numerical investigation. For the sake of brevity, the results discussed
here are those in smooth flow only, but the phenomenon of unsteady galloping also occurs in turbulent flow, showing
specific features in that case [8].

Experimental study

The phenomenon of interference of Kármán vortex shedding and galloping was experimentally studied in the CRIACIV
wind tunnel in Prato, Italy. A plywood sectional model of a rectangular cylinder was employed with a cross-section
short side D of 77 mm, a long side B of 116 mm, and a spanwise length L of 986 mm. The model was provided with
rectangular end-plates to enforce time-averaged two-dimensional flow conditions. Its carbon-fiber axis-tube was either
clamped at the ends by a pair of six-component strain-gauges force balances (static tests) or elastically suspended through
two shear-type frames of leaf springs (dynamic tests) to allow for the transverse degree of freedom only. Further details
on the experimental setups can be found in [7].
Static tests were carried out to measure the drag and lift coefficients (respectively CD and CL), which allow determining
the transverse force coefficient (see Figure 1), as follow:

CQS
Fy (α) = sec(α)[CL(α) + CD(α) tan(α)] (1)
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Figure 1: Schematic of the problem and determination of the transverse force on the vibrating rectangular cylinder with the quasi-steady
approach.
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Figure 2: (a) Experimental transverse force coefficient vs. angle of attack along with a cubic spline interpolation; (b) experimental
coefficient CL0 vs. Reynolds number and a piecewise-linear approximation.

where α is the flow angle of attack, positive nose-up. CQS
Fy is supposed to rule the quasi-steady galloping behavior [1].

No significant Reynolds number effects were detected. The Strouhal number St was also identified from force and wake
measurements. It was found that this important parameter, which determines the onset of vortex-induced vibrations, takes
a value of 0.106 for the present geometry. Finally, static tests enabled the identification of the fluctuation amplitude of the
lift coefficient at the Strouhal frequency, CL0. Such a parameter was obtained by integrating the power spectral density
of the lift coefficient in a narrow band around the vortex-shedding frequency, and by multiplying the square root of the
so-obtained variance times

√
2 (sinusoidal equivalent amplitude). Figure 2(b) highlights that significant Reynolds number

effects were observed.
In the dynamic tests, the damping of the system was varied in small steps through eddy-current dampers, so to explore a
wide range of values of the mass damping parameter. The latter, called Scruton number Sc, is here defined as 4π times
the mechanical critical damping ratio ζ0 times the mass of the oscillating system M , normalized with the mass of air
occupying the volume of the rectangular prism:

Sc =
4πMζ0
ρBDL

(2)

The linearity of the system in still-air was verified beforehand up to high amplitudes of oscillation.
Results for several values of the Scruton number are shown in Figure 3. In spite of a ratio of the quasi-steady galloping
critical flow speed Ug to the vortex-resonance flow speed Ur larger than 1.6, for Sc = 28 a fully combined excitation oc-
curs, the instability arising at the vortex-resonance flow speed, and then the oscillation amplitude monotonically growing
in a nearly linear fashion. For Scruton numbers equal to 37 and 41 (respectively Ug/Ur = 2.15 and 2.42), a transitional
behavior is observed: the first part of the amplitude-velocity curve is exactly the same as for lower Scruton numbers, but
then a peak amplitude and a plateau region are encountered, before the response curve suddenly jumps up to a higher in-
stability branch with a large hysteresis loop. It is to note that the quasi-steady instability threshold seems to coincide with
the lower bound of the hysteresis loop. For Scruton numbers equal to 46 and 52 (respectively Ug/Ur = 2.68 and 3.02), no
hysteresis loops are visible and, after the local maximum in the amplitude-velocity curve in the vortex-resonance region,
a range of small (but still significant) and irregular vibrations is observed. At higher velocities, though lower than the
quasi-steady threshold, large-amplitude oscillations appear again. High values of the mass-damping parameter (Sc ∼ 60,
Ug/Ur ∼ 3.5) have to be reached for a full separation of the excitation mechanisms of vortex-induced vibration and
galloping.
On the other hand, for low values of the Scruton number, when Ug/Ur < 1, vortex shedding is able to prevent the onset of
galloping instability, according to the phenomenon known as “asynchronous quenching” [9]. For high Scruton numbers
(46 and 52 in Figure 3), a super-harmonic resonance of order 3 is also apparent, in line with the findings in [3] for a
square cylinder. Finally, it is worth remarking the self-limited excitation occurring at low-reduced flow velocity for low
values of the Scruton number. It has been conjectured and discussed in [7] that these are vortex-induced vibrations due to
a secondary mechanism of vortex shedding.

Numerical analysis

The combined effect of Kármán-vortex shedding and galloping instability was also numerically investigated by applying
the wake-oscillator model proposed by Tamura and Matsui [10] for a circular cylinder and then adapted to a square
cylinder by Tamura and Shimada [11]. The model is based on Birkhoff’s idea of the wake as a swinging lamina [12],
and it relies on a simple linear superposition of quasi-steady and unsteady-wake nonlinear forces. In the present work,
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Figure 3: Steady-state amplitude-velocity curves for several values of the mass-damping parameter. The dashed lines indicate the
quasi-steady instability thresholds.
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Figure 4: Schematics of modified Tamura and Shimada’s model.

the governing equations were slightly modified for theoretical reasons. In particular, considering that for a rectangular
cylinder with a side ratio close to unity the wake is not expected to pivot about the stagnation point, but it starts swinging
slightly downstream, we decided to go back to Birkhoff’s formulation (the wake lamina is assumed to pivot around the
center of the cylinder), at variance with Tamura and Shimada’s scheme [11]. In addition, coherently with the equivalent
wake lamina assumption, we considered the lift force acting on it to be applied at one fourth of its length, thus removing
an unexplained modification introduced by Funakawa [13]. Therefore, the wake oscillator considered herein is that
schematized in Figure 4, and expressed by the equations:

Y ′′ + 2ζ0Y
′ + Y = −m∗ U2

4π2
f

(
ϑ+

2πY ′

U

)
−m∗ U2

4π2
CQS

Fy (3)

ϑ′′ − 2βυϑ′
(
1− 4f2

C2
L0

ϑ2

)
+ υ2ϑ = −λY ′′ − υ2 2πY

′

U
(4)

where U = V/n0D is the reduced flow speed, V the incoming flow speed, n0 the still-air natural transverse vibration
frequency, ζ0 the critical mechanical damping ratio, m∗ = ρD2L/2M the mass ratio, M the mass of the body. υ =
USt = U/Ur = ns/n0 is the velocity ratio with respect to the Kármán-vortex-resonance flow speed Ur = 1/St (or
frequency ratio), and CL0 the amplitude of the lift coefficient fluctuation for the stationary cylinder. The quasi-steady
transverse force coefficient CQS

Fy is a function of the apparent flow angle of attack α, where tan(α) = −2πY ′/U . In
addition, it holds:

β =
4
√
2

π
St2h∗f (5)

λ = 8πSt2h∗ (6)

being f the slope of the unsteady vortex-excited lift coefficient with respect to the wake inclination ϑ. In addition, the
normalized length 2l∗ = 2l/D of the equivalent wake lamina (see Figure 4) has to satisfy the following equation:

l∗h∗ =
1

8πSt2
(7)

Clearly, Eq. (4) denotes a Van-der-Pol-type oscillator coupled to the body oscillator (Eq. (3)) through the forcing terms.
In addition, the model was derived from physical principles and assumptions instead of being based on empirical and
mathematical considerations as for other approaches (e.g. [14]).
It is worth noting that, from the analytical point of view, the present version of the model slightly differs from the original
one [11] only for the expressions of the derived parameters β and λ, as well as for Eq. (7).
Another crucial modification of the original model introduced in the present work is the definition of the parameter f .
Tamura and Shimada [11] related f to the Magnus effect for a rotating cylinder, although for a sharp-edged body the
analogy is questionable and surely not straightforward. They used the value f = 1.16, derived for a circular cylinder by
Funakawa [13], and only outlined a sensitivity study on it. This approach was abandoned here. Instead, f was calibrated
based on the experimental dynamical response in the pure VIV regime, for a high value of the mass-damping parameter,
that is with no complicated interference with the galloping instability. It will be clear later that this choice has very
important consequences on the behavior of the equations.
The model equations (Eqs. (3)-(4)) were numerically solved by means of ODE45 Matlab R⃝ function, employing the
explicit Runge-Kutta method and specifically the Dormand-Prince algorithm, which uses six function evaluations to cal-
culate fourth- and fifth-order accurate solutions. Some control parameters, such as relative and absolute tolerances, were
properly tuned beforehand, so to optimize the accuracy of the solution. Several different initial conditions were considered
to explore the possible presence of multiple stable solutions in the range of amplitudes of interest for the reference wind
tunnel tests [7] and for most practical applications.
h∗, f , St, CL0 and CQS

Fy (α) in Eqs. (3)-(6) are the model’s aerodynamic parameters that have to be set in the equa-
tions. The appealing feature of the model is that all these parameters have a precise physical meaning. In particular, all
parameters but h∗ and f can be easily determined through simple experimental static tests on a cylinder held stationary.
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Figure 5: (a) Numerical results for Sc = 86 obtained setting different values of the parameter f and considering a small perturbation
of the zero-amplitude solution as initial condition; (b) numerical results obtained setting f = 9 for various initial conditions (the dotted
line denotes the unstable solution branch).
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Figure 6: Phase-space diagrams of the evolution of the variable ϑ from the initial condition Y (0) = 0.01, Y ′(0) = 0, ϑ(0) = 0,
ϑ′(0) = 0: at the reduced flow speed corresponding to the peak-amplitude in the VIV range for f = 1.16 (a); at the same reduced flow
speed as in (a) but for f = 9 (b); at the reduced flow speed corresponding to the peak-amplitude in the VIV range for f = 9 (c).
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Figure 7: Time histories of the steady-state wake oscillation at the reduced flow speed corresponding to the peak-amplitude in the VIV
range for either f = 1.16 (a) or f = 9 (b).
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Figure 8: Comparison between experimental and numerical results (the latter denoted as “TS model”) for various Scruton numbers.
Heavy and light markers denote respectively lower- and upper-branch solutions of the equations. QS stands for “quasi-steady”.
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The experimental estimation of the nondimensional depth of the equivalent wake lamina h∗ = h/D (Figure 4) is more
difficult. In fact, flow visualizations or time-accurate flow field measurements would be necessary but they are not avail-
able. Therefore, supported also by the numerical results reported in [15], it was decided to set h∗ = 1.8, as in [11] for the
square cylinder, and then to investigate the sensitivity of equations’ results to variations of this parameter.
As for the calibration of the parameter f , a test case with a Scruton number of 86 was considered. f was varied in the
range 0.5 to 12, and a selection of the resulting solutions of the equations is reported in Figure 5(a). A small perturbation
of the zero-amplitude solution was assumed as initial condition. It can be noted that the peak amplitude of the VIV
response is not much influenced by the value of f , whilst it is the slope of the amplitude-velocity curve and consequently
the extension of the flow-speed range of excitation. In particular, this slope decreases for an increment of f . A value
of f of about 9 leads to a good agreement with the experimental data, and therefore this is the value that was set in the
equations in the following analysis. In contrast, Figure 5(b) shows the results obtained starting from various larger initial
conditions. A large hysteresis loop at the upper bound of the VIV range is apparent in the numerical results, while it was
not observed in the experiments [7]. It was also verified that the results obtained with the mathematical model are not
sensitive to significant deviations from the nominal value of the parameter h∗, which is reassuring, given the uncertainty
in its setting.
In the original version of the model, the value f = 1.16 was set in the equations, relying on the previously mentioned
analogy with the Magnus effect for a rotating cylinder. This implies a value of β nearly one order of magnitude smaller
than what obtained here (see Eq (5)). This also means that the Van-der-Pol-type equation for the wake oscillator behaves
as a weakly nonlinear equation in the original version of the model, while it shows pronounced nonlinear features in
the present formulation (2β = 0.08 and 0.65 respectively for f = 1.16 and 9). This difference is clear in the results
reported in Figures 6-7. As a consequence, with the low value of f set in the equations by Tamura and Shimada [11], the
synchronization range results to be excessively narrow (Figure 5(a)), and the tendency of vortex shedding and galloping
to interfere is expected to be limited. In addition, a low value of f implies very large-amplitude of oscillation of the
wake lamina (up to nearly 1 rad), in contradiction with the physical assumptions on which the model is based (see [10]).
Conversely, the oscillations of ϑ are much smaller for f = 9 (around 0.1 rad).
Results for several values of the mass-damping parameter are reported in Figure 8, where a comparison with the ex-
perimental data is also provided. The model is able to predict the dynamical response of the rectangular cylinder with
satisfactory agreement with the experimental data. In particular, it captures the onset of the oscillations around the vortex-
resonance flow speed and the nearly linear increase of the steady-state amplitude of the motion (Figure 8(a)), without the
large overshoot around the vortex resonance observed in [11], or in [14] with a similar mathematical model. In contrast,
some limitations were observed in the Scruton number range for which transition in the interference phenomenon occurs,
the numerical results overestimating the value of the mass-damping parameter up to which the amplitude-velocity curve
monotonically increases (Figure 8(b)). The hysteresis loops observed in the experiments in the developed galloping ve-
locity range are instead shown by the model immediately after the VIV region, even for high values of the Scruton number
(namely Sc = 46, 52 and 60, Figures 8(d)-8(f)), for which no evidence of a hysteretic behavior was found in the wind
tunnel tests. Moreover, though not shown in the figures, one may note that the mathematical model’s results present a
slope of the amplitude-velocity curves that tends to increase for very low values of the Scruton number, in contrast with
the experimental results in [4, 7]. Nevertheless, such a behavior was observed in [6] for a three-dimensional arch structure
with the same 3:2 cross section.
The behavior of the wake oscillator is further investigated for Sc = 46 in Figure 9(a), where the dominant frequency in
the time histories of ϑ is plotted against the velocity ratio U/Ur. It is to note that the Strouhal law is followed up to the
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Figure 9: Pattern of the dominant wake frequency vs. reduced flow speed for two values of the Scruton number (the lower branch is
considered in the hysteresis loops).
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Figure 10: Time histories (left frames) and corresponding power spectral densities (right frames) of the steady-state wake oscillation at
two reduced flow speeds for Sc = 46 (the lower branch is considered in the hysteresis loops).

vortex-resonance flow speed (U/Ur = 1), when the wake frequency synchronizes with the body oscillator at a frequency
slightly lower than n0. Then, in the lower branch of the hysteresis loop observed for 1.4 . U/Ur . 1.9, the frequency
becomes slightly larger than the still-air body-oscillator one, and finally it takes exactly the value n0 in the developed
galloping branch, for U/Ur & 1.4. For a slightly larger Scruton number (Sc = 52), Figure 9(b) clarifies that the model
predicts that the Strouhal law is recovered in the wake when the oscillations go down to zero after the lock-in region,
although with a slightly lower frequency than for U/Ur < 1.
Some evidences of the strong nonlinear behavior of the wake oscillator are shown in Figure 10, where the significant
contribution of odd superharmonics is apparent in the time histories (Figures 10(e) and 10(f)). One can also appreciate the
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complicated, non-perfectly periodic, behavior observed in the lower branch of the hysteresis loop for Sc = 46 (namely
for U/Ur = 1.6), in a similar way to what emphasized by the experiments [7]. In addition, it is interesting to remark that
the oscillations of ϑ are relatively small even for large-amplitude vibration of the body oscillator (Figure 10(e)).

Conclusions and prospects

Wind tunnel tests revealed that the rectangular cylinder with a side ratio of 1.5 is very prone to the interference of VIV and
transverse galloping. High values of the mass-damping parameter are required to decouple the two excitation mechanisms,
and complicated nonlinear features occur in the transitional range of Scruton numbers.
The unsteady-galloping phenomenon was also approached through a modified version of the wake-oscillator model pro-
posed by Tamura and co-workers, which is able to reproduce the main features of these flow-induced vibrations. In
particular, the completely different setting of a parameter in the model allowed for a more pronounced nonlinear behav-
ior of the wake oscillator, enabling a stronger tendency to synchronization of the two coupled oscillators and a better
agreement with the experimental results. In addition, the basic underlying assumption of the model, namely the linear
superposition of quasi-steady and unsteady wake forces, provides a simple physical interpretation of the main excitation
mechanism of the interference phenomenon. Nevertheless, the limitations of the model were also highlighted in the paper.
A future development of the work might be the inclusion in the mathematical model of the effects of large-scale turbulence,
affecting the system as both an external forcing and a parametric excitation.
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