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Entrainment and Bifurcation Dynamics of a Dry Friction Oscillator
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Summary. In this work, the entrainment phenomenon in a discontinuous oscillator is investigated. The system considered is a single
degree of freedom dry friction oscillator in the form of a mass on a movingbelt. The harmonically excited oscillator is modeled as
a Filippov system and the dynamics is investigated by switch model based numerical integration. Bifurcation diagrams are generated
with excitation frequency as the parameter for different values of forcing amplitudes. Bifurcation diagrams show the existence of
entrained periodic solutions separated by quasiperiodic windows. Increase in the value of forcing amplitude lead to increase in the
bandwidth of entrained periodic solutions. It is also observed that in the entrained periodic regimes, the system exhibit discontinuity
induced bifurcations.

Introduction

Entrainment or frequency locking in nonlinear systems withcontinuous nonlinearities such as externally excited Van der
Pol oscillator has been investigated extensively in the literature [1]. During entrainment, the oscillator regains its period-
icity which was lost by the external excitation with magnitude less than a critical value. The parameter regions for which
the system is locked to the driving frequency can be understood from the Arnold tongue. The literature on entrainment
phenomena in discontinuous oscillators is limited [2]. Systems with friction belong to the category of discontinuous sys-
tems as the state variables representing the system dynamics are confined to different subspaces at different instants of
time. In this work, the frequency entrainment phenomenon inthe harmonically excited single degree of freedom (sdf) dry
friction oscillator is investigated for different values of excitation amplitudes. The model considered in this papercan be
used to model stick-slip oscillation in brakes and clutches. The study will help to understand the entrainment phenomenon
in systems undergoing stick-slip oscillations.

Model and Equations of Motion

The model shown in Fig.1(a) is a harmonically excited linearsdf oscillator resting on a belt moving with a constant
velocity Vb. The non-dimensional equations of motion governing the dynamics of the system considering the Stribeck
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Figure 1: (a)Model of a discontinuous oscillator (b) Stribeck friction model

friction model shown in Fig.1(b) is given by

ẍ+ 2βẋ+ x+ µs sgn(vr)− k1vr + k3v
3
r = f0 cosωt (1)

with non-dimensional parametersx = X
L
, β = C

√

KL
andf0 = F

N
, whereL is a characteristic length andN is the normal

load between the mass and the belt. The constantsk1 = 3(µs−µm)
2vm

andk3 = (µs−µm)
2v3

m

whereµs is the static friction
coefficient,µm is minimum value of kinetic friction coefficient withvm as the corresponding value ofvr, the relative
velocity ẋ − vb andsgn represents the signum function. Eq.(1) is expressed as a Filippov system withF1(x) andF2(x)
as the two vector fields forvr > 0 andvr < 0 respectively. Forvr = 0, the vector field is given by a convex combination
of F1 andF2 asF12 = F1 + (1− λ)F2 [3].

Results and Discussions

The dynamics of the system is investigated with parameter valuesvm = 0.5, µm = 0.25, µs = 0.4, β = 0.05. The belt
speedvb is assumed as0.3. Whenf0 = 0, the system exhibit self excited oscillation with an oscillation frequency of
0.9756 for the above given parameter values. Thomsen et al.[4] classified the motion of the above system based on the
belt velocity as stick-slip oscillation, pure slip oscillation and steady sliding. In this paper, the analysis is limited in the
region of stick-slip oscillation. The value ofvb is selected based on the above consideration.
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The Filippov system is integrated numerically employing the switch model representation [5] and the bifurcation diagram
with ω as the parameter withf0 = 0.1 is generated and is shown in Fig.2(a). The bifurcation diagram shows large
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Figure 2: Bifurcation diagram withω as the parameter (a)f0 = 0.1 (b) f0 = 0.5

regimes of quasiperiodic solutions and small windows of periodic solutions. It can be observed that close to the limit
cycle frequency ofωn = 0.9756, the solution is periodic with period 1 (P1) and it is entrained (1 : 1 entrainment). This
occurs not only at the value of0.9756 but in a band of frequencies close to the above value. Similarphenomenon can be
observed at integer multiples ofωn as marked byP2 andP3 in the figure (1 : 2 and1 : 3 entrainment). The phase plane
plots for different values ofω are shown in Fig.3(a)-(c). The bifurcation diagram withω as the parameter is generated
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Figure 3: (a) Quasiperiodic solution forω = 0.34 (b) P1 solution forω = 0.97 (c) P3 solution forω = 2.9.

for f0 = 0.5 and is shown in Fig.2(b). On comparison with Fig.2(a),the width of the quasiperiodic solution window
get reduced and the range over which the1 : 1 entrainment takes place got increased. The1 : 2 entrainment window
disappears whereas the1 : 3 entrainment window still exist. Another important observation is that the P1 solution exhibit
discontinuity induced bifurcations (DIB) [3] such as adding sliding and switching sliding bifurcations. The phase plane
plots corresponding to these bifurcations are shown in Figs. 4(a)-(c).
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Figure 4: Phase plane plots (a) stick-slipω = 0.65 (b) adding slidingω = 0.66 (c) switching slidingω = 1.5

Conclusions

In this work, the entrainment phenomenon in a discontinuousoscillator is investigated by modeling it as a Filippov system.
The bifurcation diagrams generated withω as the parameter revealed that entrainment takes place at integer multiples of
the limit cycle frequency for lower values of excitation amplitude. The periodic entrainment regions are separated by
quasiperiodic windows. For an increase in the value of excitation amplitude, the regions of quasiperiodic solution shrinks
and solution become entrained in a wider band of excitation frequency. This scenario is important in practical systems
such as brake to improve the efficiency by reducing the sliding effect.
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