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Summary. We present a novel, object-oriented framework for staged construction of adjoint equations for optimization problems with
algebraic and differential constraints, and illustrate its application to the problem of maximizing the dynamic range of a microbeam
oscillator using successive stages of numerical continuation. The new framework is encoded in production-ready toolboxes compatible
with the COCO continuation package that support a straightforward hierarchical construction of composite optimization problems.

Introduction

Numerical continuation is a well-established tool for analyzing nonlinear dynamical systems that has made its way into
several successful software implementations. Among these, the MATLAB-based computational continuation core COCO
[1] uses an embeddable construction philosophy where larger problems are assembled from smaller ones. The present
work demonstrates the integration of a technique for constrained nonlinear optimization in the COCO framework, by
relying on the successive continuation algorithm developed in [2], that augments an original continuation problem with
a set of adjoint equations and locates a local extremum in several consecutive stages. The result is a simplification of
the construction of constrained nonlinear optimization problems that generalizes the benefits of COCO for composite
continuation problems to composite optimization problems defined, for example, in terms of the properties of isolas of
periodic orbits.

Example problem statement and adjoint formulation

Consider the following optimization problem with algebraic, differential and integral constraints.

minimize: Φ(x(0), x(T ), T, p) +
∫ T
0
g(x, p)dt

subject to: ẋ− f(x, p) = 0, Ψ(x(0), x(T ), T, p) = 0,
∫ T
0
h(x, p)dt = 0

in terms of an unknown trajectory x(t), interval duration T , and problem parameters p. We use the method of Lagrange
multipliers to obtain the optimality system. After rescaling time by the transformation {t = Tτ | τ ∈ [0, 1]}, the following
Lagrangian, L, and first-order variational optimality condition, δL = 0, yield the expanded system of equations given in
Table 1, where λi’s and ηi’s are corresponding Lagrange multipliers.

L = µ1 +

∫ 1

0

λT1 (τ) (ẋ− T f) dτ + λT2 Ψ + λ3

∫ 1

0

hdτ + η1

(
Φ + T

∫ 1

0

gdτ − µ1

)
+ ηT2 (p− µ2)

Original System Adjoint System
Variation Equation Variation Equation
δλ1 ẋ− T f = 0 δx −λ̇T1 − TλT1 fx + η1 T gx + λ3hx = 0
δη2 p− µ2 = 0 δx|τ=0 −λT1 (0) + λT2 Ψx(0) + η1Φx(0) = 0
δλ2 Ψ = 0 δx|τ=1 λT1 (1) + λT2 Ψx(1) + η1Φx(1) = 0

δλ3
∫ 1

0
hdτ = 0 δT −

∫ 1

0
λT1 f + λT2 ΨT + η1ΦT + η1

∫ 1

0
gdτ = 0

δη1 Φ + T
∫ 1

0
gdτ − µ1 = 0 δp −T

∫ 1

0
λT1 fpdτ + λT2 Ψp + η1Φp + Tη1

∫ 1

0
gpdτ + ηT2 = 0

δµ1 1− η1 = 0
δµ2 ηT2 = 0

Table 1: Optimality system obtained from the variational condition δL = 0.

In particular, consistent with the implementation in COCO, the continuation parameters µ1 and µ2 are constrained to equal
the cost objective and the problem parameters, respectively. The adjoint equations constitute a necessary conditions for
a local extremum of the Lagrangian along the solution manifold associated with the differential, algebraic, and integral
constraints. Notably, at such an extremum, we must have η1 = 1 and η2 = 0.

Continuation algorithm

Our solution approach, inspired by [2], locates an extremum using at least two consecutive applications of a parameter
continuation algorithm to the optimality system minus the explicit conditions on η1 and η2. To this end, consistent with
the COCO implementation, introduce the additional continuation parameters, dµ1 and dµ2 that equal the variables η1
and η2. In the first stage, initialize the λi’s and ηi’s to zero, and allow µ1, dµ1, all but one component of dµ2 and the
corresponding component of µ2 to vary, while keeping the remaining components of µ2 and dµ2 fixed, corresponding to
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continuation along a one-dimensional solution manifold with the λi’s and ηi’s constantly equal to zero. From a geometric
fold in µ1 along this manifold, continue along a secondary branch with nontrivial values of the λi’s and ηi’s until dµ1 = 1.
Finally, fix dµ1, allow all components of µ2 to vary, and perform continuation until all components of dµ2 equal 0.

Embeddable Construction

The adjoint system, minus the explicit constraints on η1 and η2, is linear in the adjoint variables and may be written in the
more compact form (

λT1 (τ) ηT2 λT2 λ3 η1
)
· J = 0

in terms of a linear operator J (or a suitable discretization) resulting from the variation with respect to the continuation
variables x, T , and p. In matrix form, the structure of J is given by

J =


˙(·) + Tfx −(·)|τ=0 (·)|τ=1 −〈(·), f〉 −T 〈(·), fp〉

0 0 0 0 Iq
0 Ψx(0) Ψx(1) ΨT Ψp

−hx 0 0 0 0

−Tgx Φx(0) Φx(1) ΦT +
∫ 1

0
gdτ Φp + T

∫ 1

0
gpdτ


where λT1 ˙(·) = λ̇T1 , λ

T
1 (·)|τ=0 = λT1 (0), λT1 (·)|τ=1 = λT1 (1), λT1 < ·, f >=

∫ 1

0
λT1 fdτ , and λT1 < ·, f >=

∫ 1

0
λT1 fdτ .

Using COCO’s problem construction paradigm, we generate the above coefficient matrix of the adjoint formulation si-
multaneously with the original system of constraints, stage by stage. At each stage, we add rows and columns to the
coefficient matrix corresponding to additional constraints and additional adjoint variables, respectively. For example, dec-
laration of the continuation parameter vector µ2, corresponding to the constraint p − µ2 = 0, after the initial imposition
of the differential constraint results in the addition of the second row of the matrix representation of J .

Composite Problems

The form of the coefficient matrix J depends on the order in which the constraints are imposed. In any construction, each
new constraints results in the addition of rows and, possibly, columns to J . This also generalizes to a truly composite
constrained optimization problem, for example one in which multiple, initially independent differential constraints are
imposed successively and subsequently glued together. As an example, in this presentation, we illustrate the staged con-
struction of a composite optimization problem for maximizing the dynamic range of a nonlinear oscillator of the hardening
type as described in [3]. In one implementation that couples a finite-element discretization of the beam dynamics with
parameter continuation of periodic orbits, the optimization problem accounts for the dynamics of multiple periodic orbits
(each with its own adjoint system), conditions imposed between periodic orbits (both to achieve the near-linear response
and to account for equality of parameters between orbits), and the objective function that will be optimized (which itself
may relate the periodic orbits). In this case, the matrix representation of J is of the form

J1
J2

. . .
JN

X1 X2 . . . XN

Y1 Y2 . . . YN


where the Ji’s represent coefficient matrices for both the original and adjoint system of the individual periodic orbits,
the Xi’s are coefficients related to conditions imposed between periodic orbits, and the Yi’s are coefficients related to the
objective function.

Conclusion

Single-objective optimization in the presence of algebraic, differential, and integral constraints can be formulated in
terms of a sequence of one and multi-dimensional continuation problems. Our implementation in the software package
COCO allows for automated embeddable construction of the adjoint equations associated with composite optimization
problems, providing direct access to the optimality system for hierarchical problems in terms of coupled finite- and
infinite dimensional constraints.
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