
ENOC 2017, June 25-30, 2017, Budapest, Hungary

Control of amplitude chimeras by time delay in dynamical networks
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Summary. We investigate the influence of time-delayed coupling in a ring network of non-locally coupled Stuart-Landau oscillators
upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on am-
plitude chimeras which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and
show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization
(coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for
instantaneous coupling with those for constant and for time-varying coupling delays, we demonstrate that the lifetime of amplitude
chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type
of coupling delay.

A chimera state is a non-trivial partial synchronization state arising spontaneously in networks of identical oscillators
[1, 2]. Its dynamics is characterized by a spatio-temporal pattern that consists of two or more spatially separated domains
of synchronous (coherent) and asynchronous (incoherent) behavior, respectively. Chimera states have first been reported
theoretically in a ring of phase oscillators with symmetric non-local coupling, where for special initial conditions the
spatio-temporal domains of in-phase synchronized units coexist with desynchronized domains exhibiting spatially inco-
herent chaotic dynamics [3, 4].

In this paper, we investigate the influence of time delay on chimera states, specifically, the dynamical regimes and the
lifetime of amplitude chimeras in a ring network of Stuart-Landau oscillators with nonlocal time-delayed coupling. Am-
plitude chimeras occur in networks with coupled phase and amplitude dynamics, and they are distinguished from phase
chimeras and amplitude-mediated chimeras by the fact that coherence and incoherence occur only with respect to the
amplitude of the oscillators while all the elements of the network oscillate periodically with the same frequency and cor-
related phase [5, 6], and they have been found in Stuart-Landau networks with coupling which breaks the rotational S1

symmetry. In contrast to classical chimeras [7] for amplitude chimeras the transient time decreases and saturates for large
system size [8].

We investigate non-locally coupled ring networks of N oscillators with different types of delay in the coupling introduced
via the delay operator D(·). The local dynamics of the nodes is described by the Stuart-Landau oscillator, i.e., the normal
form of a supercritical Hopf bifurcation. The dynamical equations are given by:

żj =
[
λ+ iω − |zj |2

]
zj +

σ

2P

j+P∑
k=j−P

[Re(D[zk(t)])− Re(zj(t))] , (1)

where zj = xj + iyj ∈ C, λ, ω ∈ R. The variable zj describes the j-th node (j = 1, 2 . . . N , all indices mod N ),
σ is the coupling strength, and P is the number of coupled neighbors in each direction on a ring. In polar coordinates,
zj = rje

iθj , where rj = |zj | and θj = arg(zj), the dynamics of the uncoupled system is given by ṙj = (λ − r2j )rj and
θ̇j = ω. For λ > 0, the uncoupled delay-free system exhibits self-sustained limit cycle oscillations with radius r0 =

√
λ

and frequency ω. Since in our simulations we fix ω = 2, the period of oscillations is T = π, which we will also refer
to as intrinsic period. Depending on the type of the delay in the coupling, the delay operator D could act upon the state
function z(t) in different forms, e.g., D1[z(t)] = z(t − τ) in the case of constant delay, D2[z(t)] = z(t − τ(t)) for

time-varying delay, with time dependence given by the function τ(t), or D3[z(t)] =
t∫
−∞

G(t′)z(t− t′)dt′ for distributed

delay, where G(t) is a kernel characterizing the delay distribution. Here we consider coupling only in the real parts,
since this breaks the rotational S1 symmetry of the system which is a necessary condition for the existence of nontrivial
steady states zj 6= 0 and thus for oscillation death [9]. Therefore, the symmetry-breaking form of the interaction between
the oscillators induces a set of inhomogeneous fixed points in addition to the homogeneous fixed point at the origin rj = 0.

In the instantaneous coupling case D0[z(t)] = z(t), the system Eq.(1) exhibits various dynamical regimes due to the
interplay of the symmetry-breaking coupling between the individual oscillators and the nonlocal network topology, e.g.,
multi-cluster oscillation death [10]. In particular, this system demonstrates chimera behavior with respect to amplitude
dynamics, i.e., amplitude chimeras [5, 6, 11]. Amplitude chimera states can appear as long transients, potentially lasting
for hundreds or even thousands of oscillation periods before a coherent state is reached.
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Another chimera pattern observed in system Eq.(1) shows chimera behavior of steady states and is called chimera death
[5, 6, 11]. In this regime the oscillations are quenched in a peculiar way. The population of identical elements breaks up
into two groups: (i) spatially coherent inhomogeneous steady state (oscillation death), where the neighboring nodes of
the network are correlated forming a regular inhomogeneous steady state, and (ii) spatially incoherent oscillation death,
where the sequence of populated branches of the inhomogeneous steady state of neighboring nodes is completely random.

Here we analyze the lifetime of amplitude chimeras and the impact of time-delayed coupling on the network dynamics.
Including constant discrete time delay in the coupling changes both the dynamical regimes of the network and the lifetime
of amplitude chimeras. The presence of delay in the coupling significantly prolongs the lifetime of amplitude chimeras.
Time delay induces various partially incoherent states related to amplitude chimeras which are characterized by relatively
long lifetimes. These spatio-temporal patterns include a typical symmetric amplitude chimera with two coherent domains
of the same spatial width oscillating in antiphase, separated by spatially incoherent regions consisting typically of few
oscillators.

Next, we investigate the influence of time-varying delay on the network dynamics. In particular, we choose a periodic
deterministic modulation of the time-delay around a nominal (average) delay value τ0 in the form of a sawtooth-wave
modulation [12]:

τ(t) = τ0 + ε

[
2

(
$t

2π
mod 1

)
− 1

]
, (2)

and also in the form of a square-wave modulation:

τ(t) = τ0 + ε sgn[sin($t)], (3)

where ε and $ are the amplitude and the angular frequency of the corresponding delay modulations, respectively. In
particular, for a sawtooth-wave modulation of the delay given by Eq. (2) we analyze the dynamical states of the network
and the corresponding lifetimes of partially incoherent states. Note that the sawtooth-wave modulation of the delay does
not have a significant influence on the various regimes if compared to the constant delay case. There is, however, an occa-
sional appearance of partially incoherent states at small values of coupling strength σ and different values of the number
of nearest neighbours P . They survive the simulation time, but the main region of amplitude chimeras around σ = 13 and
small P is mostly unchanged with increasing modulation amplitude. The square-wave delay modulation is rather inter-
esting, since in this case by increasing the modulation amplitude, the domains corresponding to partially incoherent states
become drastically reduced, almost disappearing for larger values of modulation amplitude. The impact of the modulation
of the coupling delay on the network dynamics in the square-wave case becomes more visible in the parameter plane of
the coupling range P and the amplitude of delay modulation ε for constant coupling strength. Increasing the modulation
amplitude ε results in a sequence of appearance and disappearance of the amplitude chimera regions. Such behavior is a
characteristic feature of systems under square-wave delay modulation, and it has already been reported, for instance, in
variable-delay feedback control with respect to the sequence of stability islands for successful fixed-point control [13].
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