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Summary. We present a method for detecting and predicting the evolution of coherent spatiotemporal patterns in incompressible
time-dependent fluid flows. Our approach is based on representations of the Koopman and Perron-Frobenius governing the evolution of
observables and probability measures on Lagrangian tracers in a smooth orthonormal basis learned from velocity field data through the
diffusion maps algorithm. These operators are defined on the product space between the phase space for the velocity field evolution and
the spatial domain in which the flow takes place, and as a result their eigenfunctions correspond to global space-time coherent patterns
under the flow. Moreover, used in conjunction with Leja interpolation of matrix exponentials, our data-driven representation enables
the simulation of the evolution of observables and probability densities.

Introduction

The formation of coherent patterns is a ubiquitous phenomenon in fluid flows [1] which has received considerable attention
in the engineering, mathematical, and physical sciences. In this work, we develop an operator-theoretic, data-driven
framework for identification and prediction of such patterns generated by time-dependent, incompressible flows with
ergodic dynamics. The evolution of Lagrangian tracers in such systems has a natural skew-product structure on the product
between the fluid flow’s phase space and the physical domain where the tracers move, along with the associated Koopman
and Perron-Frobenius operators governing the evolution of observables and probability measures. While Koopman and
Perron-Frobenius operators have been extensively used for identification of coherent sets in dynamical systems [2, 3], it
appears that this skew-product structure has not been previously exploited in data-driven techniques.

Operator-theoretic formulation for skew-product systems

We model a time-dependent incompressible fluid flow on a domain X as a mapping F : A 7→ X from the state space A
of an ergodic dynamical system to the space X of divergence-free (with respect to Lebesgue measure) vector fields on X .
On A, the dynamics is described by a mapping Φt : A 7→ A, t ∈ R, preserving an ergodic probability measure α, and
to each state a there corresponds a velocity field v = F (a) ∈ X generating the (non-autonomous) evolution of tracers.
In particular, the motion of Lagrangian tracers is governed by the family of maps Ψt : A ×X 7→ X such that Ψt(a, x)
corresponds to the position of a tracer at time t released from the point x when the underlying flow state is a. Note that
Ψt satisfies the cocycle property, Ψs(Φt(a),Ψt(a, x)) = Ψs+t(a, x). Given a collection of time-ordered velocity field
snapshots {v0, v1, . . . , vN−1}, vn = F (Φnτa0), taken at a fixed time interval τ , and assuming no a priori knowledge
of the dynamics (A,Φt) or availability of tracer trajectories, our objectives are to (i) identify coherent spatiotemporal
patterns associated with the motion of passive tracers in X; (ii) predict the evolution of observables and probability
densities defined on the tracers. Our approach for addressing these objectives relies on data-driven approximations of
Koopman and Perron-Frobenius operators characterizing the evolution of observables and probability measures on the
product space M = A ×X . Intuitively, we think of M as a “space-time manifold” with X playing the role of physical
space where the motion of tracers takes place and A the role of “time” where the velocity field evolves. On M , the
dynamics is autonomous (though not necessarily ergodic), and is governed by the flow Ωt : M 7→ M , t ∈ R, having
the skew product form Ωt(a, x) = (Φt(a),Ψt(a, x)). Moreover, this flow preserves the product measure µ = α × λX .
Associated with Ωt is a group of Koopman operators {Wt}, t ∈ R, governing the evolution of observables in L2(M,µ)
via composition with Ωt, i.e., Wtf = f ◦ Ωt. This group is generated by a vector field w = dWt

dt

∣∣
t=0

on M , which acts
as a skew-adjoint operator on observables in L2(M,µ).

Identification of coherent spatiotemporal patterns
We identify coherent spatiotemporal patterns in time-dependent fluid flows through approximate eigenfunctions of the
Koopman generator w at small corresponding eigenvalue and Dirichlet energy (roughness). In particular, our approach
is based on a Galerkin method for the eigenvalue problem for w (with a small amount of self-adjoint diffusion added
for regularization) formulated in a data-driven orthonormal basis of L2(M,µ) acquired from the velocity field data using
the diffusion maps algorithm [4]. A variant of this technique was developed in [5] in the case of ergodic systems; here
we extend this methodology to the skew-product systems governing the evolution of Lagrangian tracers. To motivate
our approach, consider the eigenvalue problem w(ψ) = λψ, and suppose that this problem has a nonconstant solution
ψ ∈ L2(M,µ) at eigenvalue λ = 0. BecauseWtψ = etλψ = ψ, such an eigenfunction is preserved on tracers. Moreover,
the level sets ζc = {(a, x) ∈ M | ψ(a, x) = c} of ψ create an ergodic quotient [2] of M ; that is, a partition into
codimension 1 invariant sets on which tracers on M are trapped. In particular, if (a, x) ∈ ζc then Ωt(a, x) ∈ ζc for
all t ∈ R since ψ(Ωt(a, x)) = ψ(a, x). If w has eigenfunctions with nonzero corresponding eigenvalues, then these
eigenfunctions also provide a useful notion of coherent spatiotemporal patterns that vary periodically on the tracers.
While theoretically attractive, this approach for coherent pattern identification lacks a crucial feature, namely an operator
enforcing smoothness. That is, even in simple dynamical systems with pure point spectrum, there exist eigenfunctions
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Figure 1: Illustration of our operator-theoretic framework for skew-product systems in the case of a time-periodic flow featuring
a shifting vortex with a Gaussian streamfunction in a two-dimensional periodic domain. Left-hand panels: Snapshots of coherent
spatiotemporal patterns associated with regularized Koopman eigenfunctions with small Dirichlet energy. Middle panels: A comparison
of the time evolution of an initially Gaussian probability density under the time-dependent flow as simulated by our nonparametric
model with an ensemble of Lagrangian tracers evolved with the full model. Right-hand panels: Evolution of tracer positions with our
nonparametric model compared to a simulation with the full model.

of w with arbitrarily small eigenvalue (frequency) but arbitrarily large roughness. To eliminate such pathological eigen-
functions, instead of using the raw generator we identify coherent patterns through the eigenfunctions of the regularized
operator L = w− ε∆, where ∆ is a Laplace-Beltrami operator associated with a Riemannian metric on M whose volume
form is equal to the invariant measure µ. This operator is self-adjoint on L2(M,µ) and can be represented efficiently in
the data-driven basis of [5] by a diagonal matrix. Moreover, due to the skew-product form of the dynamics, w decom-
poses into w = u + v where u is the generator of the ergodic dynamics Φt on A and v the state-dependent vector field
in X. Both of these operators can be represented by matrices in a tensor-product basis for L2(M,µ), leading to Galerkin
scheme for the eigenvalue problem for L. Moreover, the diffusion basis also allows for computation of Dirichlet energies
of the eigenfunctions (using the diffusion eigenvalues). Ordering the eigenfunctions of L in order of increasing Dirichlet
energy, we thus identify coherent patterns with high smoothness on the product manifold M . Snapshots of such patterns
for a periodic vortical flow in a two-dimensional periodic domain resembling a blinking vortex flow are displayed in the
left-hand panels in Figure 1.

Prediction of observables and probability densities
Prediction of observables and probability densities on Lagrangian tracers has many important practical applications. For
instance, in the framework studied here a probability measure ν0 on M can be used to characterize uncertainty in both
position in the physical domain X as well as the sate of the time-dependent flow in A. Such a probability measure is
transported at time t to a measure νt = Ωt∗ν0 = ν0 ◦ Ω−1

t . Assuming that the time-dependent measure νt has smooth
density ρt relative to the invariant measure µ, we can compute this density through the adjoint (Perron-Frobenius) group
{W ∗

t }, i.e., ρt = W ∗
t ρ. Here, we approximate ρt using the exponential representation of this group, W ∗

t = e−tw, in
conjunction with our finite-dimensional approximation of the generator w in the diffusion maps basis. Numerically, this
amounts to computing the action of a matrix exponential associated with the generator on column vectors containing the
expansion coefficients of ρt in the data-driven basis. To that end, we employ Leja interpolation algorithms [6] which
approximate matrix exponentials via a polynomial interpolant—this method evaluates the action of a matrix exponentials
on vectors without explicit evaluation of the exponential itself (which is important for computational efficiency), and also
allows for large stepsizes without encountering stability issues. A comparison of ρt (marginalized overA for visualization)
as simulated by our method with a Monte Carlo simulation using the perfect model is shown in the middle panels in
Figure 1. We also construct an analogous scheme to approximate the action of the Koopman group on observables on
tracers. In particular, given an observable f ∈ L2(M,µ), then Wtf = etwf corresponds to a time-shifted observable
evaluated along the tracer trajectories. For instance, in the case of a doubly periodic domain X , observables of interest
could be f1(x) = eix1 and f2(x) = eix2 , where (x1, x2) are the canonical coordinates of the point x ∈ X . In particular,
knowledge of Wtf1 and Wtf2 is sufficient to uniquely determine the tracer positions at time t starting from arbitrary
positions in X and velocity field states in A. This capability is illustrated in the right-hand panels in Figure 1.
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