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Summary. We consider the problem of the probabilistic quantification of dynamical systems that have heavy-tailed characteristics.
Here we develop a computational method, a probabilistic decomposition-synthesis technique, that takes into account the nature of
internal instabilities to inexpensively determine the non-Gaussian probability density function for any arbitrary quantity of interest.
Our approach relies on the decomposition of the statistics into a ’non-extreme core’, typically Gaussian, and a heavy-tailed component.
The proposed approach allows for the accurate quantification of non-Gaussian tails at more than 10 standard deviations, at a fraction of
the cost associated with the direct Monte-Carlo simulations.

Introduction

Quantifying extreme or rare events is a central issue for many technological processes and natural phenomena. As extreme
events, we consider rare transient responses that push the system away from its statistical steady state, which often lead
to catastrophic consequences. Complex systems exhibiting rare events include (i) dynamical systems found in nature,
such as the occurrence of rare climate events and turbulence, formation of freak water waves in the ocean; but also
(ii) dynamical systems in engineering applications involving mechanical components subjected to stochastic loads, ship
rolling and capsizing.

Description of the Method

Let the dynamical system of interest be governed by the following stochastic partial differential equation (SPDE):

∂u(x, t)

∂t
= N [u(x, t);ω], x ∈ D, t ∈ [0, T ], ω ∈ Ω, (1)

where N is a general (nonlinear) differential operator with appropriate boundary conditions. We assume that the system
response is an ergodic process and that the system converges to a stationary probability measure. Here we are interested
in determining the statistical distribution for a quantity of interest given by a functional of the solution u(x, t) or as a
solution of another dynamical system subjected to u(x, t):

q = q[u(x, t)], or
dq

dt
=M[q, u(x, t)]. (2)

We assume that all rare event states, due to internal instabilities, defined by the condition ‖u‖ > ζ, with ζ being the rare
event threshold, ‘live’ in a low dimensional subspace Vs. We then decompose the response of the system as [1]:

u(x, t) = ub(x, t) + ur(x, t), with ur = ΠVs [u], if ‖u‖ > ζ, and ub = u− ur, (3)

where ΠVs denotes the linear projection to the subspace Vs. Above, ur describes the evolution of the rare and extreme
component of u in the subspace Vs provided the norm of the response satisfies the rare event threshold (i.e. this compo-
nent describes transient events due to intermittent instabilities) and ub is the background component that is given by the
response excluding all rare responses, i.e. ub = u − ur. This conditional decomposition allows for the study of the two
components separately (but taking into account mutual interactions), using different uncertainty quantification methods
that (i) take into consideration the possibly high-dimensional (broad spectrum) character of the stochastic background,
and (ii) the nonlinear and unstable character of rare events [1].
The application of this decomposition relies on the following assumptions [1]:

A1 The existence of intermittent events have negligible effects on the statistical characteristics of the stochastic attractor
and can be ignored when analyzing the background state ub.

A2 Rare events are statistically independent from each other.

A3 Rare events are characterized by low-dimensional dynamics.

The analysis of the two regimes consists of the following steps [1]:

1. Order-reduction in the subspace Vs in order to model the rare event dynamics, expressed through ur. Then using
the approximation u(x, t) ' ur(x, t) we will compute the conditional pdf ρ(q | ‖u‖ > ζ, ub ∈ Re), under the
condition that an extreme event occurs due to an internal instability in Re.

2. Quantification of the instability region Re using the reduced-order model, by analyzing the conditions that lead
to a rare event.
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Figure 1: Outline of the steps of the decomposition-synthesis method.

3. Description of the background dynamics, expressed through the statistics of ub, which is not influenced by any
internal instabilities in Re. Thus, when the response is dominated only by the background dynamics, we have
u(x, t) = ub(x, t) and the pdf for the quantity of interest is given by ρ(q | u = ub).

4. Probability for rare events due to internal instabilities P(‖u‖ > ζ, ub ∈ Re), which quantifies the total
time/space that the response spends in the rare event regime due to the occurrence of instabilities.

The next step of our technique is to probabilistically synthesize the information obtained from the previous analysis.
Using a total probability argument, in the spirit of [2], we obtain the statistics for the quantity of interest q by

ρ(q) = ρ(q | ‖u‖ > ζ, ub ∈ Re)Pr + ρ(q | u = ub)(1− Pr), (4)

where Pr = P(‖u‖ > ζ, ub ∈ Re) is the probability of a rare event due to an instability. The first term expresses the
contribution of rare events due to internal instabilities and is the heavy-tailed part of the distribution for q. The second
term expresses the contribution of the background state and accounts for the main probability mass in the pdf for q.
This total probability decomposition (4) separates the full response into the conditionally extreme response and the condi-
tionally background response, weighted by their appropriate probabilities. The decomposition separates statistical quan-
tities according to the total probability law through conditioning on dynamical regimes. In this manner, our approach
connects the statistical quantities that we are interested in with important dynamical regimes that determine the dominant
statistical features (e.g. a Gaussian core due to the background state and exponential like heavy-tails due to intermittent
bursts). An outline of all the steps involved is presented in Figure 2.

Applications

We apply the method in two strongly nonlinear systems, one consisting of coupled nonlinear oscillators with intermittent
energy exchanges and the other is the propagation of strongly nonlinear water waves described by the modified Nonlinear
Schrodinger equation. The results and the comparison of the associated pdf are shown in Figure 2 (oscillators - left;
nonlinear waves elevation - right).
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Figure 2: Comparison of the presented method with direct Monte-Carlo simulations - see [1] for details.


