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Summary. Particle methods in nonlinear filtering suffer from the “curse of dimensionality”, the issue of particles degeneracy within
a sample, which increases exponentially with system dimension. As a result, particle filtering for high dimensional systems can
benefit from some form of dimensional reduction. This paper presents lower dimensional particle-based filters that are developed by
combining stochastic dimensional reduction and nonlinear filtering. The particle filter is further adapted to the complexities of multi-
scale signals that are inherently chaotic, by combining importance sampling and stochastic optimal control techniques. Specifically, a
control is superimposed on particle dynamics to drive particles to locations most representative of observations. The control is chosen
to minimize a cost functional, such that the prior distribution of the particles matches as closely as possible the posterior distribution of
the true state given observations, while still staying true to the signal dynamics.

Introduction

Atmospheric models used in numerical weather forecasting are examples of multi-scale complex systems. It is well known
from the study of non-linear dynamical systems that even simple deterministic non-linear systems can give rise to complex
behavior which is statistically indistinguishable from that of completely random processes. One consequence of this is
that it may be possible to describe apparently complex signals using simple chaotic systems. In this paper, we consider
a simple heuristic atmospheric model, which nonetheless exhibits many of the difficulties arising in realistic models, to
gain insight into predictability and data assimilation.
An ongoing challenge for inference and prediction of large-scale complex systems is to efficiently analyze and assimilate
high dimensional data produced by vast numbers of engineered and natural systems. This work focuses on the challenges
in data assimilation, which arise from the interactions between uncertainties, nonlinearities, and observations. Lower
dimensional ensemble Kalman filter (enKF) and sequential importance sampling particle filter (SIS PF) are developed
based on the theoretical framework of stochastic dimensional reduction and nonlinear filtering. The SIS PF is further
adapted to the complexities of data assimilation in inherently chaotic models, when observations are sparse in time.

The Lorenz ’96 Model
The Lorenz ’96 [1] atmospheric model that mimics midlatitude atmospheric dynamics with microscopic convective pro-
cesses, is a useful tool for testing data assimilation methods for use in numerical weather simulations, owing to its trans-
parency and low computational cost. A stochastic version of the two-timescales Lorenz-96 model is used here – the full
multi-scale system is defined as the “truth", whereas a truncated, homogenized version is used as testbed for the data
assimilation schemes.
The Lorenz ’96 model was originally introduced in [1] to mimic an unspecified scalar meteorological quantity at midlati-
tude. A latitude circle is divided into K = 36 sectors, and each sector is subdivided into J = 10 subsectors:
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Xk
t represents a slow-scale atmospheric variable at time t in the kth sector. (W,V ) ∈ Rk×kj are independent Gaussian

noises to represent unresolved uncertainties and σx ∈ Rk×k, σz ∈ Rkj×kj . (Note: We use superscripts k and j to conform
with the typical spatial indexing notation used for the Lorenz ’96 model. In sections that follow, subscripts k and j will
be used as discrete time indices, not to be confused with the spatial indices of the Lorenz model). Each Xk

t is coupled to
its neighbors Xk+1

t , Xk−1
t , and Xk−2

t to mimic the westerly wind pattern in midlatitude.
The influence of multiple spatio-temporal scales is incorporated by dividing each sector k into J subsectors, and introduc-
ing Zk,jt in each subsector. Coupling between neighbors model advection between sectors and subsectors, while coupling
between each sector and its subsectors models damping. The dynamics of the X-components is also subjected to linear
external forcing F .
ε << 1 in (1b) is a small timescale separation parameter. Thus, in (1), each Xk

t represents a slowly-varying, large
amplitude atmospheric quantity, with J fast-varying, low amplitude quantities, Zk,jt , associated with it. In the context
of climate modeling, the slow component is also known as the resolved climate modes while the fast-varying component
is known as the unresolved non-climate modes. In the fast scale dynamics in [1], the nonlinear effects of order 1

ε are
dominant while the linear and slow-scale forcing are of orders 1√

ε
and 1, respectively. Here, we use a version of the

Lorenz ’96 model used in [2] and [3], in which the nonlinear, linear and slow scale effects in the fast dynamics are all
of order 1

ε . In this setting, [2] showed that (for a lower order version of the Lorenz ’96 model) the fast scale dynamics
display ergodic properties such that the averaging technique described in the lower dimensional filtering section can be
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utilized to average out the fast dynamics when we are only interested in the slow dynamics (coarse-grained process). This
is taken advantage of to reduced the dimension of the filtering problem in the work presented here.
Considering (1), in which only quadratic nonlinearity is present, the motivation behind adding stochastic forcing is to
represent higher order unresolved effects, hence the stochastic effects are made small compared to the linear and quadratic
effects via σx and σz .

Lower dimensional filtering

The filtering problem here is a 396-dimensional problem (K = 36, J = 10). Observations are taken as the slow states
with additive Gaussian noise, collected at discrete numerical integration timesteps, at intervals equivalent to 1.5 days in
real time – approximately the error doubling time for the slow-scale system when external forcing F = 8. We are only
interested in estimating the slow-scale processes, which enables us to effectively reduce the dimension of the filtering
problem. The lower-dimensional filters presented here are based on the theoretical results in [4]. The idea is that, as
the timescale separation grows large (ε ↘ 0), the slow-scale process converges in distribution to a process that can be
represented by a system with the same dimension as the slow states, in which the effects of the fast-scale has been averaged
appropriately. Specifically, for (1), X d.−→ X̄ as ε↘ 0, where X̄ satisfies a 36-dimensional equation similar to (1a), with
the fast-scale forcing effect appropriately averaged. From a numerical simulation point of view, instead of simulating the
396-dimension system (1), we can simulate the 36-dimensional equation for X̄ to obtain probabilistically similar results.
Hence, X̄ can be used as the states for the enKF and SIS PF to construct posterior filtering densities of the slow-scale
process of (1). We call these the homogenized enKF and homogenized hybrid PF (henKF and HHPF), respectively. The
henKF and HHPF are introduced in [3] and [5], respectively. In the following, we briefly describe the main theoretical
result of [4] that supports the henKF and HHPF.
A system of the type (1) can be represented by a general two-timescale stochastic differential equation (SDE) along with
observation:
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Here Xε and Zε are, respectively, the slow and fast components of the state, or signal, and Y ε is the observation.
0 < ε << 1 is the timescale separation parameter and (W,V,B) ∈ Rk+l+d are independent standard Brownian motions.
For conditions on the drift and diffusion coefficients b, f , h and σ, g, we refer the reader to [4].
In the fast timescale that is of order ε, variations of the fast component are observed, but the slow component will be
approximately constant. Assume that for every fixed x ∈ Rm, the process Zx of (2b) with Xε = x fixed is ergodic and
converges exponentially fast to its unique stationary distribution. Then, stochastic averaging theory (see, for example, [6])
tells us that under suitable conditions, Xε converges in law to X0 as ε↘ 0, where X0 is the solution of an SDE

dX0
t = b̄(X0

t )dt+ σ̄(X0
t )dWt, X0

0 = x ∈ Rm. (3)

Denote by p∞(z;x) the stationary density of Zx in the slow timescale. The coefficients in (3) are

b̄(x)
def
=

∫
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b(x, z)p∞(z;x)dz, σ̄σ̄∗(x)
def
=
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X0 can be interpreted as a representation of the slow component of (2) with the fast scale effects averaged out. X0 is used
to construct an averaged lower-dimensional filter π0.
Let Q denote the probability measure on the filtration generated by the standard Brownian motion (W,V,B). More
precisely, for any bounded measurable function ϕ on Rm, the best estimate of ϕ(Xε) given information from observations
is the measure-valued process (πεt , t ≥ 0) that is the conditional expectation πεt (ϕ) = EQ [ϕ(Xε

t , Z
ε
t )| Yεt ], where EQ is

the expectation with respect to Q and Yεt = σ {Y εs : 0 ≤ s ≤ t} ∨ N is the sigma-algebra (information) generated by the
observations up to time t, where N are the Q-negligible sets. πε is the optimal filter. The Kallianpur-Striebel formula
tells us that πε can be written in terms of the unnormalized filter ρε:
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Under Pε, the mean of Bt is shifted by
∫ t
0
h(Xε

s , Z
ε
s )ds, so the observation process Y ε is a standard Brownian motion

and is independent of (Xε, Zε). The unnormalized filter ρε satisfies the Zakai equation:
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where Lε = LS + 1
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are the generators of the slow and fast components,

respectively, and ∗ denotes the transpose. The solution to (4) can be approximated numerically by a sample of finite
number of particles with error proportional to inverse of the sample size. This representation is the particle filter. For
details on nonlinear filtering theory and particle approximation, the text [7] is a good reference.
In [4], a homogenized (unnormalized) filter ρ0 is constructed to be the solution of
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[
ϕ(X̄0)

]
, (5)

where h̄ is a suitably averaged version of h and L̄ def
= b̄(x)∗∇x+ 1

2 tr
(
(σ̄σ̄∗)(x)∇2

x

)
. In other words, ρ0 is the unnormalized

homogenized filter

ρ0t (ϕ) = EPε

[
ϕ(X0

t )D̃0
t

∣∣∣Yεt ] , where D̃0
t

def
= exp

(∫ t

0

h̄(X0
s )∗dY εs −

1

2

∫ t

0

‖h̄(X0
s )‖2ds

)
,

constructed using the homogenized process X0, but driven by the real observation Y ε instead of a “homogenized ob-
servation” Ȳ . This is practical for implementation of the homogenized filter in applications since such homogenized
observation is usually not available. Should it be available, using it may lead to loss of information for estimating the true
signal Xε. The corresponding normalized filter is π0

t (ϕ) =
ρ0t (ϕ)

ρ0t (1)
.

In [4] it is proved that for any T > 0, the difference between the original filter and the filter for the coarse-grained
dynamics constructed using (5) goes to zero as ε↘ 0, i.e.,

lim
ε→0

E
[
d(πε,xT , π0

T )
]

= 0, (6)

where d denotes a suitable distance on the space of probability measures that generates the topology of weak convergence.
In particle filtering approximation of the nonlinear filter, the particles live in the state space of the signal process and
each particle represents a stochastic realization of the signal process. [8] showed that the number of particles required
to suitably represent the signal’s distribution scales exponentially with the dimension of the state. For the signal (2a),
(2b), the ensemble size Ns needs to be greater than exp{(m+n)

1
3 } to appropriately represent the density of (Xε, Zε) on

Rm+n, which is an issue when m + n is large. This is the “curse of dimensionality”. However, if we are only interested
in estimating Xε, the result (6) of [4] states that ρ0 can be used, which requires Ns > exp{m 1

3 }, which may be more
manageable. This is the basis for the henKF and HHPF of [3] and [5], respectively. The homoginized filters require
computation of averaged coefficients b̄, σ̄ and h̄, which can be accomplished either analytically when possible or using a
multicale numerical integration technique (for example the technique of [9] used in [3] and [5]).

An optimal prior density

Due to the chaotic behavior of the Lorenz ’96 system, small errors in estimation grows over time. This presents an
issue when constructing the prior filtering density (density based on signal dynamics, prior to observations update) using
particles, when observations are sparse in time, as estimation error from the last assimilation step grows at an exponential
rate in between observations. In order to construct a better prior density for the HHPF, we introduce an additive “control”
for each particle that steers it towards a location most representative of the next observation. Specifically, for each particle
i, we solve a stochastic optimal control problem over each inter-observations time interval, where the control is determined
by minimizing a cost function that is quadratic in the control energy and the distance between the particle’s location and
the next available observation.
We describe the stochastic optimal control problem in the single timescale setting to simplify notations. Consider the
continuous-time signal with discrete-time observation:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x ∈ Rm, (7a)
Ytk = h(Xtk) +Btk , Y0 = 0d×1, (7b)

where W is a standard k-dimensional Q-Brownian motion as before Btk is a d-dimensional mean-zero Gaussian random
variable with covariance R for observation times {tk, tk ≥ 0}. In order to ensure particle trajectories do not deviate
too far from the truth in between observations Ytk and Ytk+1

, we introduce an additive “control” in the dynamics of
each particle in [tk, tk+1]. This “control” steers it towards a location most representative of the observation Ytk+1

. The
dynamics of particle i is modified from (7) to be

dX̂i
t =

(
b(X̂i

t) + uit

)
dt+ σ(X̂i

t)dWt, t ∈ (tk, tk+1). (8)
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The control ui is chosen as the control u that minimizes the cost functional:

J(tk, x, u)
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where Q(x)
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bility measure of the process X̂i that starts at x at time tk. In other words, the control drives {X̂i
t , t ∈ [tk, tk+1]} as close

as possible to the location indicated by observation at time tk+1, but with minimal effort in order to not overpower the
actual signal dynamics. The latter is achieved by minimization of the running cost
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s)
−1u(s) ds that is

inversely proportional to the signal noise variance.
By standard optimal control technique, the value function V (t, x)

def
= inf

u
J(t, x, u) satisfies the Hamilton-Jacobi-Bellman

(HJB) equation and the optimal control is u(t, x) = −Q∇xV (t, x). The HJB equation is
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The nonlinearity 1
2∇
∗
xV Q∇xV can be removed by employing a Cole-Hopf transformation as in [10, 11]: V (t, x) =

− log Φ(t, x). The optimal control becomes

u(t, x) =
1

Φ(t, x)
Q∇xΦ(t, x), (11)

where Φ(t, x) and∇xΦ(t, x) satisfy linear second order PDEs respectively, which are obtained from successive differen-
tiation of (10). The solutions Φ(t, x) and∇xΦ(t, x) to the linear second order PDEs can be obtained by the Feynman-Kac
formula, which results in the optimal control solution:
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and ηt,x is the process that evolves according to

dηt,xs = b(ηt,xs )ds+ σ(ηt,xs )dW̃s, s ∈ [t, tk+1], ηt,xt = x, (13)

where W̃ is a standard Brownian motion. Given observation Ytk+1
, the optimal control (12) steers a particle’s trajectory

in [tk, tk+1] based on the expected deviation from Ytk+1
at time tk+1. ŵt(Ytk+1

, ηt,xtk+1
) can be interpreted as the weight

of the path {ηt,xs ; s ∈ [t, tk+1]} based on how well its tk+1 location agrees with observation Ytk+1
. This result is the same

as the optimal control obtained by applying the Clark-Ocone formula to the solution of the HJB equation (10) as in [12],
when signal noise is additive, and the path integral solution of [13]. The prior density constructed using particles X̂i

tk+1

is optimal in the sense that particles starting from the same location at time tk have minimum weight variance.

Numerical experiments

For numerical experiments on the Lorenz ’96 model, a timescale separation of ε = 0.01 is used. The fast- and slow-scale
couplings are taken as (hx, hz) = (−1, 10), while the slow-scale external forcing is set as Fx = 10. The true signal is
taken as the R36+360 vector[

[Xε]
∗

[Zε]
∗]∗

=
[[
X1 . . . X36

]∗ [
Z1,1 . . . Z1,10 Z2,1 . . . Z2,10 Z3,10 . . . Z36,10

]∗]∗
,

simulated according to (1). We have a multiscale system with additive noise of the form

dXε
t = b(Xε

t ,Z
ε
t )dt+ σxdWt, Xε ∈ R36,

dZεt =
1

ε
f(Xε

t ,Z
ε
t )dt+

1√
ε
σzdVt, Zε ∈ R360,

where W ∈ R36 and V ∈ R360 are independent standard Brownian motions. The slow-scale signal noise covariance
σx is taken as a sparse square matrix each with 1 on the diagonal and 0.05 on the first two sub- and super-diagonals.
The fast-scale noise covariance σz is set similarly. Observation is taken as the complete slow-scale component Xε, with
standard Gaussian noise, recorded at discrete timesteps:

Y εtk = H

[
Xε
tk

Zεtk

]
+Btk ,
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where Btk ∼ N (036×1, I36×36) for all k = 1, 2, . . . and H = I36×36. The time interval in between observations is
equivalent to 1.5 days in real time. The deterministic version of (1) with Fx = 10 has error doubling time τd ≈ 1.6 days
([1]). Hence, observations intervals are approximately equal to the error doubling time.
We are interested only in the coarse-grained dynamics X, hence we can apply the homogenization result described in
the lower dimensional filtering section and use a reduced dimension (36-dimensional) filter in place of the full (36+360)-
dimensional filter. The henKF and HHPF are implemented. For the homogenized filters, the signal is given by

dX0
t = b̄(X0

t )dt+ σxdWt, X0 ∈ R36, (14)

where the fast-scale effects in b̄ have been averaged w.r.t. the stationary distribution of the fast component. Particles are
sampled to represent the state of (14). Since there is only one time scale with no small parameter ε, numerical integration
of the homogenized system can be performed using timestep of order 102 larger than that for the multiscale system.
Numerical experiments are performed for an interval equivalent to 100 days in real time.
The following filters are implemented:

• sequential importance sampling particle filter (PF)

• homogenized hybrid particle filter (HHPF)

• homogenized hybrid particle filter with optimal nonlinear particle control (HHPFc): nonlinear control using (12);
if, for each particle, a sample of size ns is used to approximate the expectation in (12), then we denote the corre-
sponding filter by HHPFc (ns).

• ensemble Kalman filter (enKF) with no homogenization

• homogenized ensemble Kalman filter (henKF); this is the same as the scheme in the wide timescale separation
setting in [3]

Each filter is implemented with 30 particles. For each particle in the HHPFc, a sample of 30 particles is used to approxi-
mate the expectation in (12) for the optimal control, indicated in the subscript in HHPFc (30).
The filtering results of the HHPF, HHPFc,(30) and henKF for one experiment are shown in Figures 1, 2 and 3. Solid
blue plots are the true states. In Figures (a), broken red plots with error bars are filter means with ±1×sample standard
deviations. Green error bars are ±2×sample standard deviatons. The error plot is the time varying normalized RMSE

et
def
=
‖X true

t −Xfilter
t ‖

‖X true
t ‖

, (15)

whereXfilter is computed using the sample mean of the respective filters. In Figures (b), red crosses are particle trajectories.
Solid green crosses in Figures (b) indicate observations. Observation noise is of the same order as signal noise, but noise
amplitudes are small compared to the signal, hence observations are quite accurate.

(a) (X1, X2, X3) (b) (X1, X2, X3) particles

Figure 1: HHPF
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(a) (X1, X2, X3) (b) (X1, X2, X3) particles

Figure 2: HHPFc,(30)

(a) (X1, X2, X3) (b) (X1, X2, X3) particles

Figure 3: henKF

The HHPF has reduced computation time compared to the PF. However, with sample size of 30, the PF and HHPF
are found to be unable to track the true signal over the 100-day interval (Figure 1). Even with sample size increased
to O(103), the HHPF does not do well. Applying the nonlinear optimal control to particles significantly improves the
performance of the HHPF, as seen in Figure 2(a). The henKF and enKF are both able to track the true signal well, but
the henKF is faster by taking advantage of homogenization. The advantage of the henKF and enKF over the standard
particle filter is that, even though all particles are weighted equally, particle locations are corrected at each observation
time based on observations (in the standard particle filter, particle locations are determined only by signal dynamics, only
particle weights are changed by observations). The error plots of the henKF and enKF display more pronounced peaks,
due to error growth in between observation times, which drop at observation times when new observations are assimilated.
Error growth in between observation times are shown in the particle trajectories of the henKF in Figure 3(b). These error
growths are more significant when observations frequency is decreased (Figure 5, where observations intervals is doubled
to 3 days real time).
Table 1 shows the comparison of the filters over 40 independent experiments. The normalized RMSE (15) is integrated
over time for each experiment and the average over 40 experiments are shown, along with averages of the RMSE at
observation times and computational time.
The optimal control on particles enables the homogenized particle filter to track the true signal, and based on Table 1, the
estimation is comparable to the homogenized and full ensemble Kalman filters. The optimal control of particles has a
theoretically sound basis for application in nonlinear problems, as presented in the preceeding section on an optimal prior
density. However, computation of the expectation in (12) incurs a high cost. By increasing Ns for the henKF, estimation
error can be lowered with lower computational cost than the HHPFc (30) and enKF. It remains to be studied whether more
efficient schemes can be found for computing (12). In the Lorenz ’96 experiments, the HHPFc is found to work well when
the expectation in (12) is approximated with just one realization of the process η in (13), i.e. when the filter HHPFc (1) is
used (see Table 1). In this case, the HHPFc (1) requires computational time comparable to the enKF, but the henKF is still
the most efficient. Figures 4 and 5 show the HHPFc (1) and henKF when observations interval is doubled to 3 days. Error
growth of the henKF particles within an inter-observations interval is more pronounced.
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Filter PF HHPF enKF henKF
RMSE 18.974 19.140 5.252 5.432

RMSEobs times 18.373 18.703 4.164 4.463
time 323 s 50 s 384 s 45 s

Filter HHPF2Ns

c,(1) HHPFc,(1) HHPFc,(30) Obs
RMSE 4.711 4.559 4.655

RMSEobs times 4,877 4.484 4.417 4.833
time 49 s 241 s 2705 s

Table 1: RMSE integrated over time, RMSE at observations times integrated over time, and filter computation time, averaged over 40
experiments

(a) (X1, X2, X3) (b) (X1, X2, X3) particles

Figure 4: HHPFc,(1), observations every 3 days real time. Particle trajectories still remain close to true signal trajectory due to control

(a) (X1, X2, X3) (b) (X1, X2, X3) particles

Figure 5: henKF, observations every 3 days real time. Particle trajectories deviate from true trajectory in between observation times

When observations are sufficiently accurate and signal noise is small, the optimal control ensures most of the particle
filter sample members do not stray too far away from the truth at all times, so the sample mean provides a good estimate
of the true signal. Since each particle is steered towards locations indicated by observations independently of the rest, we
can expect a small sample size to be able to provide a good estimate of the true signal location. Indeed, Figure 6 shows
the estimate from one experiment using a sample size of 2 (HHPF2Ns

c,(1) ). The time-integrated RMSE and computation
time are comparable to the henKF (see Table 1). The downside to steering particles is that the sample is not distributed
well, tending to be clustered about a mean, albeit close to the truth. Accurate observations also result in most weight
being concentrated on one particle that is closest to the truth (this is seen in all the particle filter variants). The number of
particles with significant weight is small and often close to 1. As a result of these, the truth can fall outside ±2×sample
standard deviations from the mean, and higher order moments cannot be estimated. In further experiments, we find that
the optimal control is still able to keep particles close to the truth when signal and observation noise amplitudes are large,
but accuracy of the HHPFc sample mean decreases and larger sample size is required, as one would expect.
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(a) (X1, X2, X3) (b) (X1, X2, X3) particles

Figure 6: HHPFc,(1) with sample size 2, observations every 36 hours

Although we have accurate estimate based on sample mean from a concentrated sample, we always desire a diverse sample
in order to be able to properly capture the distribution of the true signal. A diferent form of optimal proposal density would
be required, for example, similar to the scheme in [14, 15] that makes all particle weights almost equal at the observation
step. However, when observations are accurate, the particles may again be concentrated. Different schemes remain to be
studied, for example, schemes that utilize the existence of invariant manifolds.

Conclusions

The lower-dimensional filters are able to estimate the true slow-scale process using observations generated from the true
signal, and are shown to have better computational efficiency compared to the multi-scale filter when applied on the
Lorenz ’96 model testbed. The lower-dimensional SIS PF is further adapted to address the chaotic nature of the model by
constructing an optimal prior density that ensures particles do not stray too far from the locations indicated by observations
and prevents particle weights from collapsing when observations are incorporated for constructing the posterior density.
Acknowledgements: The authors would like to acknowledge the support of the AFOSR under grant number FA9550-17-
1-0001.
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