
ENOC 2017, June 25-30, 2017, Budapest, Hungary

Motion Planning Problem for a Finite-Dimensional Approximation of the
Navier–Stokes Equations

Alexander Zuyev∗,∗∗

∗Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
∗∗Institute of Applied Mathematics & Mechanics, National Academy of Sciences of Ukraine

Summary. We consider a finite-dimensional projection of the Navier–Stokes equations describing the motion of a viscous incompress-
ible fluid in a two-dimensional domain. This system is controlled by the forces corresponding to low-frequency modes. As an example,
sufficient controllability conditions are proposed in terms of the first-order Lie brackets for the control-affine system under considera-
tion. It is shown that the approximate motion planning problem is solvable by using a family of trigonometric control functions. An
important feature of our control design scheme is that the control coefficients are computed explicitly in terms of solutions to auxiliary
algebraic equations. We also discuss possible extensions of this approach for the case of controllability conditions with higher-order
Lie brackets.

Derivation of the Equations of Motion

Consider the Navier–Stokes equations for the case of an incompressible fluid in a two-dimensional domain:

∂v

∂t
+ (v · ∇) v +

1

ρ
∇p− ν∆v =

m∑
j=1

uj(t)Fj(x), (1)

where v = (v1, v2) is the velocity field, p is the pressure, ∇ is the gradient, ∆ is the vector Laplace operator, ν ≥ 0 is the
kinematic viscosity, ρ > 0 is the density, and the dot stands for the inner product operation. The functions p = p(t, x)
and v = v(t, x) depend on the time t and the spatial coordinates x = (x1, x2) ∈ T2. The right-hand side of system (1)
describes the mass forces acting on the fluid. It is assumed that the action of controls uj(t) on the motion of the fluid is
given in terms of functions Fj(x), j = 1, 2, ...,m. In addition to the Navier–Stokes system, we introduce the continuity
equation:

∇ · v = 0. (2)

The system of equations (1)–(2) is considered on the two-dimensional torus x ∈ T2, so that the functions p(t, x) and
v(t, x) satisfy the periodic boundary conditions. By introducing the operator ∇⊥ and computing the vorticity w =
∇⊥ · v = ∂v2

∂x1
− ∂v1

∂x2
, we obtain the following system from the Navier–Stokes equations (1):

∂w

∂t
+ (v · ∇)w − ν∆w =

m∑
j=1

ujwj(x), (3)

where wj(x) = ∇⊥ ·Fj(x). It is a well-known fact that each function v(t, x) satisfying the continuity equation (2) may be
uniquely reconstructed (up to a constant) from the function w(t, x) [2]. We assume that the functions v(t, x) and w(t, x)
have zero mean value in T2 for all t. Under these assumptions, the controllability problem for system (3) by applying a
degenerate forcing on the torus has been studied in the paper [1]. In this work, we will construct a family of controls uj(t)
in order to solve the motion planning problem for a finite-dimensional approximation of system (3).
Let us introduce the Fourier series for w(t, x) with respect to the eigenfunctions {eik·x} of the Laplace operator on T2:

w(t, x) =
∑
k∈Z2

qk(t)e
ik·x, q0 = 0.

For any finite subset of indices G ⊂ Z2, we may consider the corresponding finite-dimensional projection of system (3)
on the subspace spanned by {eik·x| k ∈ G}, according to Galerkin’s method (cf. [1]):

q̇k =
∑

m+n=k

(m1n2 −m2n1)|m|−2qmqn − ν|k|2qk +
m∑
j=1

ujϕjk, k,m, n ∈ G, (4)

where ϕjk are the Fourier coefficients of wj(x).
As an example, let us consider the Galerkin system for the following set of indices:

G = {(k1, k2) ∈ Z2| |k1| ≤ 1, |k2| ≤ 1}.

Note that q̄k = q−k ∈ C as w(t, x) is a real function, and q0,0 ≡ 0 due to the zero-mean assumption. We use the following
notations for complex variables:

q1,1 = ξ1 + iξ2, q1,−1 = ξ3 + iξ4, q1,0 = ξ5 + iξ6, q0,1 = ξ7 + iξ8.
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Then system (4) may be written in real coordinates as

ξ̇ = f0(ξ) +
m∑
j=1

ujfj(ξ), ξ = (ξ1, ξ2, ..., ξ8)
T ∈ R8, (5)

f0(ξ) = −νξ +
1

2



−2νξ1
−2νξ2
−2νξ3
−2νξ4

ξ1ξ7 + ξ2ξ8 − ξ3ξ7 + ξ4ξ8
ξ2ξ7 − ξ1ξ8 − ξ4ξ7 − ξ3ξ8
ξ3ξ5 + ξ4ξ6 − ξ1ξ5 − ξ2ξ6
ξ3ξ6 − ξ4ξ5 − ξ2ξ5 + ξ1ξ6


, ν ≥ 0. (6)

The components of fj(ξ) = (fj1, fj2, ..., fj8)
T are constants which can be represented in terms of the parameters ϕjk

of system (4). Consider a particular case m = 4 and assume that the controls act on the chosen low-frequency modes as
follows:

f1 =



f11
0
0
0
f15
0
0
0


, f2 =



0
f22
0
0
0
f26
0
0


, f3 =



0
0
f33
0
0
0
f37
0


, f4 =



0
0
0
f44
0
0
0
f48


. (7)

Motion Planning Problem

Following the approach of [3, 4], we introduce the sets of indices S0, S1 ⊆ {1, 2, ...,m}, S2 ⊆ {1, 2, ...,m}2, and
consider the following family of controls:

uk(t) =
∑
i∈S0

δkivi+
∑
i∈S1

δkiai sin

(
2πKit

τ

)
+

∑
(i,j)∈S2

aij

{
δki cos

(
2πKijt

τ

)
+ δkj sin

(
2πKijt

τ

)}
, k = 1, 2, ...,m,

(8)
where τ > 0, vi, ai, aij are real parameters, Ki and Kij are nonzero integers, and δki is the Kronecker delta. The main
result of this work concerns the solvability of the approximate motion planning problem for system (5) at time τ > 0:
given ξ0 ∈ R8, ξ1 ∈ R8, and ϵ > 0, the goal is to construct an admissible control u : [0, τ ] → Rm such that the
corresponding solution ξ(t; ξ0, u) of system (5) satisfies the conditions ξ(0; ξ0, u) = ξ0 and ∥ξ(τ ; ξ0, u)− ξ1∥ < ϵ. The
above problem has a solution for arbitrary ξ0, ξ1 ∈ R8 and ϵ > 0 only if system (5) is approximately controllable. Let us
formulate sufficient controllability conditions.
Proposition 1. Let m = 4, ν > 0, fjj ̸= 0, and fj,j+4 ̸= 0 for each j = 1, 2, 3, 4. Then the vector fields fi(ξ) satisfy the
rank condition

span (fi(ξ), [f0, fj ](ξ)| i, j = 1, 2, 3, 4) = R8

in a neighborhood of ξ = 0, and the control-affine system (5) with the vector fields given by (6), (7) is locally controllable
at ξ = 0. Here [f0, fj ](ξ) denotes the Lie bracket.

Conclusions

By exploiting Theorems 3.1 and 3.2 from the paper [4], we show that the approximate motion planning problem is solvable
for system (5) with controls of the form (8) provided that the conditions of Propositon 1 hold, and ∥ξ0∥ and ∥ξ0 − ξ1∥
are small enough. An important feature of our control design scheme is that the coefficients of (8) are computed in terms
of solutions to auxiliary algebraic equations. As a possible direction for further study, we discuss an extension of this
approach for the case of controllability conditions with higher-order Lie brackets.
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