Control of a Cart With Oscillators Under Uncertainty

Ananevskii I.M.^{1,2} and Ishkhanyan T.A.^{1,2,3}

¹Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia ²Moscow Institute of Physics and Technology (State University), Moscow, Russia ³Institute for Physical Research NAS RA, Ashtarak, Armenia

<u>Summary</u>. A control problem for a system, consisting of a cart with attached to it several linear oscillators is considered. The cart moves along a horizontal line under the action of a control force and unknown disturbance. The phase states of the oscillators are assumed to be not available for measuring. A bounded feedback control which in a finite time brings the cart to the prescribed terminal state from the neighborhood of it is proposed.

Keywords: linear controllable system, system of oscillators, feedback, disturbance

Statement of the problem

Consider a cart with mass m_0 moving along a straight line on a rough horizontal surface with attached to it n linear oscillators. Oscillators are assumed to be horizontally oscillating material points with masses m_i , connected with the cart via springs with spring constants c_i , i = 1, 2, ..., n. The cart is acted by a control force u and unknown disturbance v. The motion of the system is described by equations

$$m_0 \ddot{x} = u + v + \sum_{i=1}^n c_i y_i$$

$$m_i (\ddot{x} + \ddot{y}_i) = -c_i y_i$$
(1)

where x describes the position of the cart on the horizontal line, y_i — elongation of the spring of the *i*-th spring-mass oscillator, i = 1, 2, ..., n. The masses and spring constants of the oscillators are assumed to be unknown and their phase coordinates and velocities y_i, \dot{y}_i are not available for measuring. The disturbance v is unknown too and obeys the condition

$$|v(t)| \le V, \quad V > 0$$

A feedback control function as a function of variables x, \dot{x} , that meets the constraint

$$|u(x,\dot{x})| \le U, \quad U > 0 \tag{2}$$

should be designed, such that it brings the cart to the origin in a finite time. The states of the spring-mass oscillators are irrelevant at the moment when cart reaches the origin.

Several assumptions are made: control resources exceed the disturbance, initial energy of the spring-mass oscillator system is small and the cart is close enough to the terminal state at the initial time moment.

Control algorithm

To solve the above-formulated problem we use the approach, proposed in [1,2]. Let the control function be

$$u(x,\dot{x}) = -\frac{m_0 6x}{T^2(x,\dot{x})} - \frac{3m_0 \dot{x}}{T(x,\dot{x})}$$
(3)

Here the function $T(x, \dot{x})$ is implicitly defined by the equation

$$dT^4 - 6\dot{x}^2T^2 - 24x\dot{x}T - 36x^2 = 0, \quad d > 0 \tag{4}$$

As it is determined in [1], the equation (4) has the only one positive solution for T in the whole phase space x, \dot{x} except zero. This solution is given by an analytic function as the relation (4) is a polynomial equation for T with coefficients, depending on the phase variables x, \dot{x} . Moreover, the function $T(x, \dot{x})$ can be defined at zero as T(0, 0) = 0, which preserves the continuity of it.

The coefficients of the feedback control function (3) at phase variables x, \dot{x} infinitely increase when these phase variables tend to zero. However, the control (3) is bounded in the whole phase space: the special choice of the parameter d in the equation (4) ensures the constraint (2).

Let

$$f(t,y) = v + \sum_{i=1}^{n} c_i y_i, \quad y = (y_1, \dots, y_n)$$

Together with the initial system (1) one may consider the following equation

$$\ddot{x} = u + f \tag{5}$$

where f is treated as an uncertain disturbance. As it is shown in [2], the derivative of the function T according to equation (5) in the absence of the disturbance (i.e. $f \equiv 0$) obeys the inequality

$$\dot{T} < 0$$

Moreover, as it is proven in [3], the derivative of the function T according to equation (5) meets the inequality

$$\dot{T} < -\gamma, \quad \gamma > 0$$

under the condition

$$|f| \le \frac{3 - \sqrt{3}}{6}U$$

Consider the Lyapunov function

$$V(x, \dot{x}, y, \dot{y}) = T(x, \dot{x}) + \frac{1}{2} \sum_{i=1}^{n} \left(c_i y_i^2 + m_i (\dot{x} + \dot{y}_i)^2 \right)$$

This function is positive-definite and the derivative of it according to system (1) is written as

$$\dot{V} = \dot{T} - \dot{x} \sum_{i=1}^{n} c_i y_i$$

The main result of the present research is formulated in the following theorem. **Theorem.** There exists $V_0 > 0$, such that for trajectories of system (1), (2), starting in the neighborhood of the origin of the phase space x, \dot{x}, y, \dot{y} , given by the relation $V(x, \dot{x}, y, \dot{y}) \leq V_0$, the following inequality holds

$$\dot{V} < 0$$

Moreover, along these trajectories

$$T < -\sigma, \quad \sigma > 0$$

It follows from the Theorem, that the function $T(x, \dot{x})$ vanishes to zero in a finite time, i.e. every trajectory of equation (5) reaches the origin of the phase space x, \dot{x} in a finite time. This means that the cart will be stopped and further be held in the origin by control (2).

Acknowledgements

This work was supported by the Russian Science Foundation (project 16-11-10343).

References

 Ananievskii I.M., Anokhin I.M., Ovseevich A.I. (2010) Bounded feedback controls for linear dynamic systems by using common Lyapunov function. *Doklady Mathematics* 82 (2):831-834.

[2] Ovseevich A. (2015) Local Feedback Control Bringing a Linear System to Equilibrium. JOTA 165 (2):532-544.

[3] Anan'evskii I.M., Ishkhanyan T.A. (2016) Control of a turntable on a mobile base in the presence of perturbations. J. Comput. Sys. Sci. Int. 55 (3):483-491.