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Interacting global and slow manifolds
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Summary. We consider the consequences of a first quadratic tangency between the unstable manifold of a saddle-focus equilibrium
and a repelling slow manifold in an ordinary differential equation model with one fast and two slow variables. This phenomenon occurs
near a singular Hopf bifurcation, and we show that it leads to the creation of large-amplitude excursions and associated mixed-mode
periodic orbits. The local and global organisation of phase space during the transition through the tangency is obtained by computing
the global and slow manifolds as families of orbits segments with a two-point boundary value problem set-up.

We are concerned with three-dimensional slow-fast systems with one fast and two slow variables. More specifically, we
study the ordinary differential equation model from [2] for a singular Hopf bifurcation, given by

εẋ = y − x2 − x3, ẏ = z − x, and ż = −ν − ax− by − cz. (1)

As was found via the integration of selected trajectories up to a suitable section [1, 2, 3], system (1) features a tangency
between the unstable manifold Wu(p) of a saddle focus equilibrium p and the repelling slow manifold Sr

ε . Throughout,
we use the same fixed values of the parameters a = 0.008870, b = −0.5045, c = 1.17 and ε = 0.01, while ν is varied
as the bifurcation parameter. We are interested here in the consequences of this tangency, both locally near p as well as
globally throughout phase space. To this end, we compute the surfaces Wu(p) and Sr

ε and their intersection sets with
different types of sections as families of orbit segments, which are specified by suitably defined boundary value problems;
see [1, 4] for details.
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Figure 1: Local (a) and global (b) views of the first tangency between Sr
ε and Wu(p).

The moment of the first tangency is illustrated in Fig. 1. Panel (a) shows the situation locally near p: the quadratic
tangency is clearly visible in the section Σ1, where the intersection sets of Sr

ε andWu(p) are a straight line and a parabola,
respectively; the tangency point corresponds to a special trajectory ξ∗, which we call a connecting canard, along which
the surfaces Sr

ε and Wu(p) meet; all other trajectories of Sr
ε stay below the surface Wu(p) and intersect the section Σ2 in

two spirals that connect at the intersection point of the stable manifold W s(p). Figure 1(b) shows the global consequence
of the tangency: the surface Wu(p) extends far up along Sr

ε , so that the connecting canard ξ∗ leaves and then re-enters a
neighbourhood of p.
The transition through the first tangency of Sr

ε and Wu(p) leads to a spectacular change of the two surfaces involved:
Wu(p) grows dramatically in size; moreover, after the tangency, Sr

ε no longer resides only below Wu(p), but also
accumulates on the upper branch of W s(p). The latter leads to further quadratic tangencies between Sr

ε and Wu(p),
and the creation of large periodic orbits. These are characterised by large excursions interspersed with small-amplitude
oscillations near p, meaning that they are a type of mixed-mode oscillations. Interestingly, the large MMO periodic
orbits, which may be attracting, are actually linked with a attracting small-amplitude periodic orbit arising from the Hopf
bifurcation — representing a robust mechanism for complicated recurrent dynamics.
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