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Position Control of an Electro-Pneumatic Clutch Using Takagi-Sugeno Techniques

Robert Prabel∗ and Harald Aschemann∗
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Summary. The paper presents a nonlinear control design for the position of an electro-pneumatic clutch that is based on a nonlinear
mathematical model. Regarding the lower and upper bounds of the nonlinear terms involved, a fuzzy Takagi-Sugeno (TS) description
with four corner models in a polytopic framework can be used for the control design. The feedback control gains are calculated for
each corner model, and the overall adaptive feedback gain vector results from a norm-optimal combination of the individual feedback
actions of these corner models. For an improvement of the tracking behaviour of the clutch, the control structure is extended by a
dynamic feedforward control as well as an observer-based disturbance compensation. Here, a lumped disturbance force is estimated by
a gain-scheduled sliding mode observer. The benefits of the proposed control structure are demonstrated by experimental results from
a dedicated test rig.

1. Introduction and Motivation

Vehicles with an internal combustion engine as the prime mover are typically equipped with a clutch – either manually
or automatically actuated –, which is especially needed during start-up phases. To increase the comfort and to allow
for automated transmissions, feedback-controlled clutch systems as central components are required. In the literature,
different models for the calculation of the transmitted torque can be found, e.g. [7], [8] and [11]. Typically, algebraic
equations for the transmitted torque are of the form

Tcl = ncl Rµ FN , (1)

where ncl is the number of friction discs. The equivalent friction radius Rµ mainly depends on the temperature of the
friction discs as well as the relative angular velocity between the motor and the gear box input shaft. FN represents the
normal force acting on friction disc, which can be adjusted by an automated clutch actuator. In heavy truck applications
with up to 16 gears, a electro-pneumatic solution is typically installed, and this actuator is position-controlled. The
relationship between the position of the clutch actuator z and the resulting normal force FN is depicted in Fig. 1b, where zzu
represents the position of the completely closed clutch. Here, the clutch can transmit the maximum torque of the internal
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(a) Test rig for the electro-pneumatic clutch.
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(b) Experimentally identified normal force.

Figure 1: Test rig at the Chair of Mechatronics, University of Rostock.

combustion engine. Usually, gain-scheduled PD- or PI-controllers extended by suitable feedforward control actions are
employed in industrial solutions. However, more accurate nonlinear control concepts can be found in [1], [6] and [9],
where the nonlinearities in the pneumatic subsystem as well as hysteresis in the nonlinear clutch force characteristic are
properly addressed. In this paper, a TS control approach is presented and applied to a clutch test rig, which is available
at the Chair of Mechatronics, University of Rostock, see Fig. 1a. Control designs based on TS techniques have been
successfully applied to several nonlinear problems, see [4] and [5]. The outline of this paper is as follows: Control-
oriented models for the mechanical and pneumatic subsystem are derived in Sect. 2. Next, based one a quasi-linear
state-space representation, a TS control approach for the position of the clutch is derived in Sect. 3. Furthermore, a sliding
mode state observer is introduced, see Sect. 4. Besides, the overall control structure is validated in experiments, see
Sect. 5. Finally, the paper concludes with a short summary of this contribution.

2. Modelling of the Clutch Actuator

Pulse-width-modulated on/off valves are used to provide the inlet and outlet air mass flows for the pneumatic chamber of
the actuator. Thereby, the internal pressure in the pneumatic cylinder changes, and finally drives the piston. The nonlinear
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model of the electro-pneumatic clutch can be divided into a mechanical and a pneumatic subsystem. Fig. 2a shows the
mechatronic model of the system. The considered operation range is limited by positive values 0 < z < zzu ≤ lmax. Due to
the wear of the friction pad during operation, the position zzu of the fully closed clutch increases slowly.
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(a) Mechatronic model of the
electro-pneumatic clutch.
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(b) Measured and identified clutch force with hysteresis.

Figure 2: Structure of an electro-pneumatic clutch (a) and normalised nonlinear characteristics of the clutch force (b).

Mechanical Subsystem
The acceleration of the piston rod results directly from Newton’s second law

z̈ =
1
m
[Fcl−Ak (p− p0)− csp (zsp + z)−FU ] , (2)

with m as the reduced mass of all the moving components of the pneumatic clutch, Ak as the piston surface and p0 as the
ambient pressure. Furthermore, a pre-load force zspcsp of a spring with the stiffness csp, the nonlinear clutch force Fcl and
a lumped disturbance force FU are introduced. Moreover, the nonlinear clutch force

Fcl = Fcl,st +Fcl,hys (3)

can be divided in a static part Fcl,st – representing the medium curve – and a hysteresis part Fcl,hys. A detailed modelling
with a sixth-degree polynomial ansatz function for the medium clutch force is presented in [2], which is also employed in
this paper. The hysteresis part of the clutch force describing the deviation from the medium curve Fcl,st(z) is modelled by
the generalised Bouc-Wen model Fcl,hys = Fcl,hys(z,ξ ). Detailed information regarding the implemented Bouc-Wen model
as well as its parametrisation is provided in [1]. The modelling results are depicted in Fig. 2b.

Pneumatic Subsystem
Pressurised air is used for the actuation of the clutch. A control-oriented model for the pneumatic subsystem based
on a mass flow balance in combination with a polytropic change of thermodynamic state for the compressed air in the
pneumatic chamber can be found in [1] and [2]. The resulting differential equation for the internal pressure is given by

ṗ =
nRL T ṁ

V (z)
+

pnAk ż
V (z)

, (4)

with the actual volume of the cylinder chamber V (z) = V0 +Ak(lmax− z). The parameters in (4) are the gas constant of
air RL, the polytropic exponent n, and the resulting sum ṁ of the inlet and outlet mass flows. For a simplification of the
mechatronic model, the internal temperature T is parametrised with the constant temperature Tamb of the ambiance. To
simplify the control design for the inner loop, the term u(t) = RL ·Tamb · ṁ(t) is introduced as control input.

Valve Actuation
Pulse-width-modulated on/off valves are used to control the inlet and outlet mass flow ṁ. Compared to proportional
valves, on/off valves are much cheaper and more energy efficient. Instead of using the PWM signal and mathematical
description for the mass flow, an experimentally identification of the mass flow characteristic has been carried out, see
Fig. 3. An corresponding approximative inverse can be derived numerically with high accuracy. A pre-multiplication with
this inverse valve characteristic practically linearises the nonlinear valve characteristic.
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(a) Experimentally identified mass flow map.
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(b) Numerically inverted mass flow map.

Figure 3: Identified (a) and inverted (b) mass flow map of one selected valve.

3. TS Control Design for the Position of the Clutch

As a basis of the feedback control design, the nonlinear mathematical model – with the state vector x = [z ż p]T as well as
the control input u = RL T ṁ – is rewritten as a quasi-linear state-space representation

ẋ = A(z, ż) x+b(z) u+ e FDis

=


0 1 0
−csp

m
−b
m

−Ak

m
0 0 nAk f1(z, ż)


 z

ż
p

+
 0

0
n f2(z)

u+


0
−1
m
0

 [csp zsp−Ak p0−Fcl +FU ]︸ ︷︷ ︸
FDis

, (5)

where the nonlinear terms

f1(z, ż) =
ż

V0 +Ak (lmax− z)
, (6)

f2(z) =
1

V0 +Ak (lmax− z)
(7)

depend on the clutch position as well on the velocity. Note that this quasi-linear representation is still exact and does not
involve any approximation. Considering the lower and upper bounds of the nonlinear terms, the constant system matrices
of the corner models

A1 = A(max f1,max f2), A2 = A(max f1,min f2), A3 = A(min f1,max f2) and A4 = A(min f1,min f2) (8)

as well as the constant input vectors

b1 = b(max f1,max f2), b2 = b(max f1,min f2), b3 = b(min f1,max f2) and b4 = b(min f1,min f2) (9)

can be introduced. Given the normalizing conditions wi,1 +wi,2 = 1, the ansatz wi, j for the weighting functions with
0≤ wi, j ≤ 1, i ∈ {1,2} and j ∈ {1,2}, is as follows

fi(z, ż) = wi,1 max fi +wi,2 min fi . (10)

The solution leads to the following expressions

wi,1(z, ż) =
fi(z, ż)−min fi

max fi−min fi
,

wi,2(z, ż) =
max fi− fi(z, ż)
max fi−min fi

, (11)

which allow for an exact interpolation of the corner systems with the given bounds. After some formula manipulations,
the membership functions of the four corner models result in

h1(z, ż) = w11(z, ż)w21(z) , h2(z, ż) = w11(z, ż)w22(z) , h3(z, ż) = w12(z, ż)w21(z) and h4(z, ż) = w12(z, ż)w22(z). (12)

Now, the exact quasi-linear state representation (5) can be rewritten as

ẋ =
4

∑
l=1

hl(z, ż) [Al(z, ż)x+bl(z)u]+ eFDis . (13)
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Figure 4: Membership functions of the corner models of the polytope.

State-Feedback Design Using Eigenvalue Placement
The state feedback kT

l , l ∈ {1,2,3,4}, is designed by an eigenvalue placement for each corner system. Therefore, the gain
vector kT

l is calculated by a comparison of the desired characteristic polynomial of the closed-loop system

pc,d(s) = (s− sc1)(s− sc2)(s− sc3) , with sci < 0, i ∈ {1,2,3} , (14)

specifying three eigenvalues sci for the characteristic equation for each corner model

pc(s) = det
(
sI3−Al +bl kT

l
)
= det

(
sI3−Ac,l

)
, l ∈ {1,2,3,4} , (15)

where I3 is the 3x3 identity matrix and Ac,l the closed-loop system matrix in each corner l of the polytope. Typically,
a parallel-distributed compensator (PDC), see [10] for details, is employed for the feedback control of TS state-space
models

uFB(z, ż) =−
4

∑
l=1

hl(z, ż)kT
l x , (16)

which requires the use of linear matrix inequalities (LMIs) for the stability proof. Here, an alternative approach is proposed
using the following design condition

4

∑
l=1

[hl(z, ż)bl ]︸ ︷︷ ︸
b(z)

kT (z, ż) = b(z) kT (z, ż) =
4

∑
l=1

[hl(z, ż) bl kT
l ]. (17)

This condition cannot fulfilled exactly but the equation error can be minimized in a least-squares sense. This leads to a
norm-optimal solution based on the pseudo-inverse of b(z) according to

kT (z, ż) = (bT (z)b(z))−1 bT (z)
[
h1(z, ż)b1 kT

1 +h2(z, ż)b2 kT
2 +h3(z, ż)b3 kT

3 +h4(z, ż)b4 kT
4
]
, (18)

which interpolates between the constant control gain vectors kT
l of the corner models. The overall state-dependent feed-

back gains are shown in Fig. 5.



ENOC 2017, June 25-30, 2017, Budapest, Hungary

−0.1

0

0.1

0
0.025

0.05
0.075

−6

−4

−2

·105
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(a) Feedback gain k1(z, ż) for the position z.
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ż in m/sz in m

k F
B
,2
(z
,ż
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(b) Feedback gain k2(z, ż) for the velocity ż.
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,ż
)

(c) Feedback gain k3(z, ż) for the pressure p.

Figure 5: State-dependent overall feedback gains kT (z, ż).

The controlled system can be stated as

ẋ = (A(z, ż)−b(z)kT (z, ż))︸ ︷︷ ︸
Ac(z,ż)

x+ eFDis, with

A(z, ż) =
4

∑
l=1

hl(z, ż)Al ,

b(z) =
4

∑
l=1

hl(z, ż)bl . (19)

Here, the system matrix of the closed-loop system Ac(z, ż) turns out to be constant

Ac(z, ż) = A(z, ż)−b(z)kT (z, ż) =


0 1 0
−csp

m
−b
m

−Ak

m
ac,3,1 ac,3,2 ac,3,3

= const. (20)

The constant matrix elements read as follows

ac,3,1 =
1

Ak

(
−msc1 sc2 sc3 + csp (sc1 + sc2 + sc3)+

bcsp

m

)
,

ac,3,2 =
m
Ak

(sc1sc2 + sc1sc3 + sc2sc3)+
b

Ak
(sc1 + sc2 + sc3)+

b2

Ak m
−

csp

Ak
,

ac,3,3 = sc1 + sc2 + sc3 +
b
m
. (21)

Given the constant system matrix, the closed-loop stability is guaranteed by the specified eigenvalues in the left s-half-
plane.

Feedforward Control Design
Considering the position of the clutch as controlled state variable

y = z = [1 0 0]x = cT x , (22)
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the command transfer function results in

Y (s)
UFF (s)

= cT [sI−
(
A(z, ż)−b(z)kT (z, ż)

)︸ ︷︷ ︸
=Ac

]−1b(z) =
b0

N (s)
. (23)

Obviously, the numerator of the command transfer function does not contain any zero. The main idea of the feedforward
control design is the modification of the numerator of the control transfer function by introducing a polynomial ansatz for
the feedforward control action in the Laplace domain according to

UFF (s) =
[
kV 0 + kV 1 · s+ kV 2 · s2 + kV 3 · s3]Yd (s) . (24)

A comparison of the coefficients in the numerator as well as the denominator polynomials leads to ai = b0 · kVi, i =
{0, . . . ,n = 3}. The corresponding position-dependent feedforward gains results in

kV 0(zd) =
sc1 sc2 sc3 mV (zd)

Ak n
,

kV 1(zd) =−
(sc1 sc2 + sc1 sc3 + sc2 sc3) mV (zd)

Ak n
,

kV 2(zd) =
(sc1 + sc2 + sc3) mV (zd)

Ak n
,

kV 3(zd) =−
mV (zd)

Ak n
. (25)

These feedforward gains are evaluated with desired values zd for the clutch position. For its implementation, the desired
trajectory yd(t) = zd(t) as well as the first three time derivatives are available from a state variable filter.

Dynamic Disturbance Compensation
To improve the tracking behaviour a disturbance compensation is essential. According to (5), the overall disturbance
force FDis = csp zsp−Ak p0−Fcl +FU depends on the spring pre-load csp zsp, the ambient pressure force Ak p0, the clutch
force Fcl , and a unknown force FU that takes into account parameter uncertainty as well as unmodelled nonlinear friction.
This resulting disturbance force FDis has to be compensated as good as possible to achieve an accurate tracking behaviour.
Therefore, a dynamic disturbance compensation is employed. The corresponding disturbance transfer function from the
disturbance input to the controlled output becomes

Ge(s) =
Y (s)

FDis (s)
= cT [sI−

(
A(z, ż)−b(z)kT (z, ż)

)︸ ︷︷ ︸
=Ac

]−1e . (26)

For an ideal disturbance compensation, the condition

Y (s) = Gb(s) ·UDC(s)+Ge(s) ·FDis (s)
!
= 0 (27)

has to be fulfilled. For this purpose, an ansatz function for the disturbance compensation is made according to

UDC(s) = GDC(s) ·FDis (s) =
[
kDC0 + kDC1 · s+ kDC2 · s2]FDis . (28)

Inserting (28) in (27), the condition becomes

0 !
= FDis︸︷︷︸
6=0

[Gb(s) ·GDC(s)+Ge(s)︸ ︷︷ ︸
!
=0

]. (29)

For a dynamic disturbance compensation, the corresponding ansatz coefficients have to be chosen in such a way that the
first three coefficients of the numerator polynomial become zero. The required time derivatives of the disturbance FDis are
calculated by real differentiation.

4. Gain-Scheduled Sliding Mode State Observer

For cost reasons, a sensor for the measurement of the internal pressure p is usually not available in real trucks. As an
alternative, an estimation of this state is envisaged. In the following, a gain-scheduled sliding mode state observer is
designed according to [3] for the estimation of the internal pressure. Furthermore, it has been shown in [9] that both
the pressure and the disturbance force FU cannot be observed simultaneously in steady-state phases with ż = 0. As a
remedy, an effective cylinder pressure – consisting of the sum of the internal pressure and a correction term addressing
the contribution of the disturbance force FU – is introduced with

pe = p+
FU

AK
, (30)
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which leads to the completely observable system representation

ẋo(t) =


0 1 0

Fcl(z, ż,ξ )− csp · (z+ zsp)

mz
0 −

Ak

m

0
n p0

V (z)
n ż

V (z)


︸ ︷︷ ︸

Ao=A(z,ż)

xo(t)+


0
0
n

V (z)


︸ ︷︷ ︸

bo=b(z)

u(t) , with xo(t) =

 z(t)
ż(t)
pe(t)

 . (31)

In a first step, a transformation matrix T S is calculated to rearrange the state vector in such a way that the unknown states
– the effective pressure and the piston velocity – are shifted to the first two positions in the observer state vector

xS = T S xo , with T S =

 0 1 0
0 0 1

cT
m

=

 0 1 0
0 0 1
1 0 0

 . (32)

Next, the state dependent system matrices have to be recalculated due to the transformed state vector xS

AS = T S Ao T−1
S =

[
A11 a12

aT
21 a22

]
=


0 −

Ak

m
Fcl(z, ż,ξ )− csp · (z+ zsp)

mz
n p0

V (z)
n ż

V (z)
0

1 0 0

 , (33)

bS = T S bo =

[
bS1

bS2

]
=


0
n

V (z)
0

 and cT
S = cT

m T−1
S . (34)

Then, the sliding mode observer has the form ˙̂xu

˙̂y

=

[
A11 a12

aT
21 a22

][
x̂u

ŷ

]
+

[
bS1

bS2

]
u−

[
g1
g2

]
(ŷ− y)+

[
l
−1

]
υ , (35)

where x̂u contains the unmeasured states ˆ̇z and p̂e, and ŷ = ẑ the measured state. g1 and g2 denote Luenberger type gains,
whereas l ∈R2×1 is a feedback gain vector. The discontinuous input is given by υ =M1 sgn(ẑ−z), with a positive constant
gain M1. Introducing the definitions

e1 =

[
ˆ̇z− ż

p̂e− pe

]
(36)

and ey = ẑ− z, (34) and (35) lead to the following dynamics[
ė1

ėy

]
=

[
A11 a12

aT
21 a22

][
e1

ey

]
−

[
g1
g2

]
ey +

[
l
−1

]
υ . (37)

With a new error variable ē1 = e1 + l ey, the error dynamics w.r.t. the state variables ē1 and ey can be expressed as[
˙̄e1

ėy

]
=

 A11 + l aT
21 a12− (A11 + l aT

21) l−g1 + l · (a22−g2)

aT
21 a22−g2−aT

21 l

[ ē1

ey

]
+

[
0
−1

]
υ . (38)

Here, the additional switching input υ affects only the last row. By a proper selection of the gain vector g1, the vector

a12− (A11 + l aT
21) l−g1 + l · (a22−g2) = 0 (39)

vanishes. Therefore, in the case of υ = 0, the asymptotic stability of the error dynamics (38) can be guaranteed by
choosing the gain vector l and the scalar gain g2 as follows

det(s− (A11 + l aT
21))

!
= (s+ p1)

2 , (40)

det(s I− (a22−g2−aT
21 l)) !

= (s+ p2) , (41)

where p1 > 0 and p2 > 0 determine the desired characteristic polynomials of the block diagonal matrices, respectively.
The additional switching input υ yields the potential to provide robustness against certain classes of model uncertainty.
Considering chattering that may be caused by the discontinuous components, the tanh function is used in the implemen-
tation instead of the sgn function.
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5. Experimental Results
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uw=[zd żd z̈d zd ]T uFF

R
ea

l
D

if
fe

re
nt

ia
ti

on

TS Feedback 
Control

TS Feedforward
Control

uFB

F hys

TS Dynamic 
Disturbance Compensation

State-Dependent Sliding
Mode State Observer

Bouc-Wen
Hysteresis Model

F hys

Inverse Mass 
Flow Map   

uDC

Figure 6: Block diagram of the implemented control structure.

The overall control structure – involving feedback control, feedforward control, and observer-based disturbance estimation
as well as disturbance compensation – is shown in Fig. 6. Note that a hysteresis model is employed for a correction of both
the state observer and the disturbance compensation, evaluated with measured values. The pneumatic valve characteristics
are compensated by inverse flow maps. A dSPACE real-time system is used to drive the test rig. The supply pressure
pS for the on-off-valves is available at a level of pS ≈ 9 ·105 Pa. The desired trajectory for the clutch position as well as
its corresponding time derivative are depicted in Fig. 7. The clutch is fully closed at z = zzu = 0.0385 m. Furthermore,
different scenarios are presented in the desired trajectory: a complete opening and closing of the clutch for e.g. gear
shifting is considered as well as a simulated step-wise start-up of the truck.
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Figure 7: Desired values for the experimental investigation of the clutch.

The overall control concept has been successfully validated at a test rig at the Chair of Mechatronics, University of
Rostock. The corresponding experimental results for the tracking behaviour with small tracking errors are presented in
Fig. 8. The maximum absolute position error is max(|e|)≈ 2 mm, which occurs at t ≈ 28 s. For the purpose of a parameter
identification, a pressure sensor is installed at the test rig. As already mentioned in Sect. 4, however, a pressure sensor is
not available in real trucks. Therefore, an estimation of the effective pressure is performed by a sliding mode state and
disturbance observer. The obtained results are depicted in Fig. 9, which indicate an accurate estimation of the internal
chamber pressure.

6. Conclusions

In this paper, a model-based control concept for a electro-pneumatic clutch is presented. First, a control-oriented model is
derived based on physical modelling. Thereby, the main nonlinearities can be attributed to the clutch force characteristics
with hysteresis and to the pneumatical subsystem. The control design is based on an exact Takagi-Sugeno representation,
where the nonlinear control-oriented model is written in a quasi-linear form. Considering the given bounds of the nonlinear
terms, four corner models with constant system matrices and corresponding membership functions are introduced. In
each corner, a linear state feedback is designed. With the help of a pseudo inverse, a norm-optimal adaptive feedback
gain vector can be derived that leads to a constant closed-loop system matrix. The specified eigenvalues guarantee,
hence, asymptotical stability of the controlled system. Furthermore, a model-based feedforward control and a dynamic
disturbance compensation are designed to improve the tracking behaviour regarding a desired trajectory for the clutch
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(a) Desired and measured position of the clutch.
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(b) Tracking error of the clutch position.

Figure 8: Comparison of desired and measured values (a) and the corresponding tracking error (b) regarding the clutch
position (experimental results).
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Figure 9: Measured internal pressure and estimated effective pressure (experimental results).

position. Additionally, a sliding mode state observer is designed to estimate an effective pressure in the chamber. Finally,
the overall control structure has been successfully validated on a dedicated test rig available at the Chair of Mechatronics,
University of Rostock.

References

[1] Aschemann, H., Prabel, R., and Schindele, D.: Hysteresis Compensation and Adaptive LQR Design for an Electropneumatic Clutch for Heavy
Trucks. In European Control Conference (ECC), 2013, pp. 1475–1480.

[2] Aschemann, H., Schindele, D., and Prabel, R.: Observer-Based Control of an Electro-Pneumatic Clutch Using Extended Linearisation Techniques.
In 17th International Conference on Methods and Models in Automation and Robotics (MMAR), 2012, pp. 493–498.

[3] Edwards, C. and Spurgeon, S.: Sliding Mode Control: Theory And Applications. In Series in Systems and Control Taylor & Francis, 1998.
[4] Georg, S. and Schulte, H.: Actuator Fault Diagnosis and Fault-Tolerant Control of Wind Turbines Using a Takagi-Sugeno Sliding Mode Observer.

In Intl. Conf. on Control and Fault-Tolerant Systems (SysTol), 2013, pp. 516–522.
[5] Gonzalez, T., Rivera, T. and Bernal, M.: Nonlinear Control for Plants with Partial Information via Takagi-Sugeno Models: An Application on the

Twin Rotor MIMO System. In 9th Intl. Conf. on Electrical Engineering, Computing Science and Automatic Control (CCE), 2012, pp. 1–6.
[6] Langjord, H., Kaasa, G.O., and Johansen, T.A.: Nonlinear Observer and Parameter Estimation for Electropneumatic Clutch Actuator. In IFAC

Symposium on Nonlinear Control Systems, 8, 2013, pp. 789–794.
[7] Pica, G., Cervone, C., Senatore, A., Lupo, M. and Vasca, F.: Dry Dual Clutch Torque Model with Temperature and Slip Speed Effects. In Intelligent

Industrial Systems, 2016, vol. 2, num. 2, pp. 133–147.
[8] Pisaturo, M., Senatore, A. and D’Agostino, V.: Automotive Dry-Clutch Control: Engagement Tracking and FE Thermal Model. In IEEE 20th

Jubilee International Conference on Intelligent Engineering Systems (INES), 2016, pp. 69–74.
[9] Prabel, R. and Aschemann, H.: State-Dependent Sliding Mode Observer for an Electro-Pneumatic Clutch. In Intl. Conf. on Advanced Intelligent

Mechatronics (AIM), 2016.
[10] Tanaka, K. and Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, 2001.
[11] Vasca, F., Iannelli, L., Senatore, A. and Reale, G.: Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement. In IEEE/ASME

Transactions on Mechatronics, 2011, vol. 16, num. 3, pp. 564–573.


