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On a family of gradient-free control functions for extremum seeking problems
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Summary. In this paper, we construct a family of control functions which ensure the motion of a system in the direction of the negative
gradient of a given cost function. It is assumed that the analytical expression of the cost function is unknown, and only its values
are available for the control design. Such problem statement typically arises in extremum seeking control. Based on the Lie bracket
approximation method, we show that the trajectories of the proposed system approximate the gradient flow of the cost function and
prove the asymptotic stability of the extremum point. Several particular control strategies are compared. Moreover, we demonstrate the
application of the obtained results to vibrational control.

Introduction

The development of control strategies approximating the gradient of fully or partially unknown function is a challenging
issue which finds applications in many problems of modern control theory. One of them is the extremum seeking problem
which was studied in a number of papers (see, e.g., [1, 7]). In simple terms, a static extremum seeking problem can be
formulated as follows: suppose that the values of the cost function J(x) are available, where x ∈ Rn is the state of a
system and there exists x∗ ∈ Rn which is a point of minimum of J: J(x∗) < J(x) for all x 6= x∗. The purpose is to
construct a control law that asymptotically steers a given system to x∗, assuming that only the values of the cost function
J(x(t)) are available for control design. Recently, it was proposed to use the Lie bracket approximation method to solve
the extremum seeking problem [2]. Namely, it was shown in [2] that trajectories of a control-affine systems

ẋ = f0(t, x) +

l∑
j=1

fj(t, x)
√
ωuj(t, ωt) (1)

can be approximated by the trajectories of the following Lie bracket system:

˙̄x=f0(t, x̄)+ 1
T

∑
i<j

[fi, fj ](t, x̄)

∫ T

0

∫ θ

0

uj(t,θ)ui(t,τ)dτdθ. (2)

In (1), (2), x = (x1, . . . , xn)T ∈ Rn, x̄ = (x̄1, . . . , x̄n)T ∈ Rn, x(t0) = x̄(t0) = x0 ∈ Rn, ω > 0, the vector fields
fk : R × Rn → Rn, and T -periodic (T > 0) control functions uj : [0,∞) × [0,∞) → R satisfy certain assumptions,
and [fi, fj ](t, x̄)=

∂fj(t,x̄)
∂x fi(t, x̄)−∂fi(t,x̄)

∂x fj(t, x̄). Moreover, it was proven that the asymptotic stability of a compact
set S ⊂ Rn for system (2) implies the practical asymptotic stability of S for system (1) (for the practical stability
notions see, e.g., [2]). This result allows to approximate the gradient of a function without knowledge of it analytical
expression. To illustrate this fact, consider a one-dimensional system ẋ = J(x)

√
ω cos(ωt)+

√
ω sin(ωt), x ∈ R, ω > 0.

Considering cos(ωt), sin(ωt) as controls, we see that the corresponding Lie bracket represents the gradient flow of J ,
namely, ˙̄x = 1

2 [J(x̄), 1] = − 1
2J
′(x̄) which converges to x∗ (locally or globally, based on the properties of J(x)).

Based on these results, several types of controls were proposed, see, e.g. [2, 6]. In this paper, we introduce a novel family
of control functions which generalize the above strategies and allows to design new extremum seeking systems. Moreover,
we show the application of the proposed functions to vibrational stabilization problems.

Main results

Consider a system

ẋ =

n∑
i=1

(
Φi(J(x))

√
ωi cos(ωit) + Ψi(J(x))

√
ωi sin(ωit)

)
, (3)

where x∈Rn, Φi,Ψi : R→Rn, J : Rn→R, and ωi=kiω with some ω>0, ki ∈ N, ki 6=kj for i6=j. The main result of this
paper presents a family of vector fields Φi,Ψi such that the trajectories of (3) approximate the negative gradient flow of
J(x).
Theorem 1. Let J∈C2(Rn;R), and there exist x∗∈Rn : J(x)>J(x∗) and ‖∂J(x)

∂x ‖
2>0 for all x∈Bρ(x∗)\{x∗}, with

ρ>0. Define Φi=ϕiei,Ψi=ψiei, where ei denotes the i-th unit vector in Rn, and ϕi, ψi∈C2(R;R) satisfy the relation

ψi(z) = ϕi(z)

(∫
1

ϕi(z)2
dz + c

)
, (4)

where
∫

1
ϕi(z)2

dz is any antiderivative of the function 1
ϕ(z)2 , and c ∈ R is an arbitrary constant. Then the point x∗ is

locally practically uniformly asymptotically stable for system (3). Moreover, if the above conditions hold for every ρ > 0
then x∗ is semi-globally practically uniformly asymptotically stable for system (3).
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Figure 1: a)–c): the trajectories of system (3) for cases (5)– (7), respectively, ω1 = 10, ω2 = 11.

The proof of the Theorem 1 is based on the fact that, under conditions of the theorem, the Lie bracket system for (3) has
the form ˙̄x = − 1

2
∂J(x̄)
∂x̄ , and the asymptotic stability follows from the results of [2] (see also [3]).

The formula (4) generalizes some known results from the extremum seeking theory. For simplicity, assume x ∈ R, and
Φ1 = ϕ, Ψ1 = ψ. The paper [2] presents the extremum seeking strategy of form (3) with

ϕ = J(x), ψ ≡ 1, (5)

which has a simple form and can be used for a broad class of functions J . The control with so-called bounded updated
rates were introduced in [6]. It is given by

ϕ = sin(J(x)), ψ = cos(J(x)). (6)

The following functions also have bounded updated rates and possesses the useful property ϕ(J(x)), ψ(J(x)) → 0 as
J(x)→ J(x∗), which ensure better behavior of solutions in cases of known extremum value J(x∗) as it is, for example,
the case in vibrational stabilization problems:

ϕ =

√
1− eJ(x∗)−J

1 + eJ−J(x∗)
sin(eJ−J(x∗)+2 ln(eJ−J(x∗)−1)), ψ =

√
1− eJ(x∗)−J

1 + eJ−J(x∗)
cos(eJ−J(x∗)+2 ln(eJ−J(x∗)−1)). (7)

Note that the functions in (7) do not satisfy assumptions of Theorem 1 since they are not twice continuously differentiable
at 0, however, the practical asymptotic stability in this case can be proven, see [3] for a complete proof and extensions.
Moreover, practical exponential stability can be established under additional assumption on J(x). In Fig. 1, we illustrate
the above-type control strategies for x ∈ R2 and J(x) = x2

1 + x2
2 which has the global minimum at x = (0, 0)T . As

can be observed, (7) performs very well in comparison with (5) and (6). The results obtained can be also applied for the
stabilization of the control-affine system

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R (8)

with unknown f, g and known control Lyapunov function. Namely, the following vibration control law was proposed
in [5, 4]: u = V (x)

√
ω cos(ωt) + 2γ

√
ω sin(ωt), where γ is a positive constant, and V (x) is a control Lyapunov

function for (8). The asymptotic stability was proved based on the Lie bracket approximation for (8) with such control:
˙̄x = f(x̄) − γg(x̄)(LgV (x̄))T , where LgV = ∂V

∂x g. Similarly to the extremum seeking problem, we may generalize the
proposed class of controls using u(V (x), t) = ϕ(V (x))

√
ω cos(ωt) + ψ(V (x))

√
ω sin(ωt), with ϕ,ψ satisfying (4).

Conclusions

In this paper, we have presented a family of control functions which allow to approximate the gradient flow of the cost
functions with fully or partially unknown analytical expression. We considered applications of this result in the extremum
seeking and vibrational control theory. Several particular control strategies have been discussed.
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