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Summary. Lyapunov stability is highly desired in many mechanical engineering systems with unilateral contacts. Nevertheless, the
Lyapunov stability analysis of equilibria is very difficult, because even small perturbations may result in hybrid dynamics with impacts
and non-smooth transitions. Our work concerns with the analysis of a planar rigid body with two frictional unilateral point contacts
under inelastic impacts. The dynamics of the system is examined via a low-dimensional projection of a Poincaré map. Our approach
enables the determination of Lyapunov stability or instability for almost any equilibrium state. The results are illustrated by simulation
examples and by stability and instability regions in two-dimensional parameter planes.

Background

Lyapunov stability of an equilibrium state is a fundamental concept in dynamical systems theory. For mechanical systems,
it means that the dynamic response stays bounded in a small neighborhood of a static equilibrium configuration under
small perturbations in the system’s state, i.e. positions and velocities. This type of stability is highly desired in robotic
applications such as grasping, quasistatic manipulation and legged locomotion, which commonly involve intermittent
contacts. In (multi-) rigid body systems under unilateral frictional contacts, analysis of the dynamic response in the
vicinity of an equilibrium state is a challenging task since it requires consideration of various transitions between different
contact states, including separation, impacts and stick-slip transitions. In addition, it may suffer from difficulties such as
solution indeterminacy or inconsistency due to Painlevé paradoxes [?, ?].

Several earlier works have used the technique of Lyapunov functions, either energy-based or via sum-of-squares opti-
mization, in order to prove stability and find bounds on region of attraction [?, ?]. Nevertheless, a major drawback of
this technique is that it can only prove stability but does not enable determination of instability. Other works utilized
the Poincaré map approach, typically by obtaining the discrete-time dynamics of states at impact times. These works
were limited to systems with a single contact and ignored slippage and friction constraints, thus considering trivial hybrid
transitions.
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Figure 1: (a) Two-contact equilibrium configuration. The circle represents the radius of gyration and the position of the center of mass.
The arrow is an external force. The friction cones at the contact points are shown graphically. (b) A solution trajectory with two-letter
labels representing contact modes of the two points. z2, z1 and 2z is a set of generalized coordinates (details omitted). The meanings
of the letters are positive (P) or negative (N) slip, stick (S), free motion (F), or impact (I). IF and FI means impacts at one point while
the other switches to F mode. II is a simultaneous impact at the two points. (c) Plots of the reduced Poincaré map R(¢) (top) and the
growth map G(p) (bottom). ¢ is the angle of the pre-impact normal velocity at point 2 with respect to the contact normal and R(¢)
gives the value of this angle after a full cycle. The function G encodes the factor of growth of the normal velocity of point 2 in one
full Poincaré cycle. Our detailed analysis reveals that both functions may be undefined at some points, which is related to simultaneous
impacts (II) events.

Problem statement, and solution methods

In this work [?], we revisit the simplest possible example of a non-trivial mechanical contact system earlier studied by
[?, ?]: a planar rigid body with two unilateral frictional contacts under inelastic impacts (Fig. 1(a)). The motion of the
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Figure 2: (a) Example 1 —regions of center-of-mass position with different stability properties plotted over a two-contact configuration.
(b,c) Example 2 — regions with different stability properties in (c, p2) plane and a nominal two-contact configuration. The meanings
of the enumerated regions are: not an equilibrium (0); excluded from the analysis due to Painlevé’s paradox (1) or due to a technical
constraint, which will be removed by future work (7); Lyapunov stable (2,3); unstable due to reverse chatter (4,5) or due to ambiguity

(6).

system is approximated by its zero-order dynamics where the solution under each possible contact mode involves constant
accelerations and contact forces (see Fig. 1(b) for a simulation examples). A simple impact model is used, which takes the
form of a piecewise linear mapping of generalized velocities. We define a Poincaré map for states of impact at one contact
point and sustained contact at the other (Fig. 1(b)). Exploiting invariance relations, this three-dimensional Poincaré map
is reduced into a scalar map R and a scalar growth function G which together encapsulate the entire dynamics of the
system under any local perturbation (Fig. 1(c)).

Conditions of stability and instability

Two possible mechanisms of instability are identified: one due to ambiguous equilibrium (i.e. the coexistence of the
equilibrium with a non-static solution) and the other due to a reverse chattering (an infinite, diverging sequence of impacts
resembling the motion of a bouncing ball backwards in time). At the same time, we also find evidence of finite-time
convergence to equilibrium in other situations via an infinite decaying sequence of impacts (like a bouncing ball forward
in time) or via a finite sequence involving a simultaneous impact at the two points. Based on these observations, we
present a semi-analytic method for determination of Lyapunov stability or instability for almost any possible two-contact
equilibrium state satisfying some mild conditions, by analyzing the interval graph structure of the reduced Poincaré map.

Conclusions

Our results show that the Lyapunov stability of the object depends on model parameters in a highly nontrivial and often
counterintuitive way. In Fig. 2, we show two examples of stability regions in two-dimensional sections of the space
of model parameters. In panel (a) the position of the center of mass is varied, whereas panel (b) shows, for an object
resting on a slope (see panel(c)), the effects of slope angle and the friction coefficent at one of the two contact points.
Counterintuitive features of these plots include for example that increasing the angle o may either stabilize or destabilize
the object.
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